Suppr超能文献

万古霉素治疗大鼠中与急性肾损伤新型尿液生物标志物升高相关的万古霉素暴露评估。

Evaluation of Vancomycin Exposures Associated with Elevations in Novel Urinary Biomarkers of Acute Kidney Injury in Vancomycin-Treated Rats.

作者信息

Rhodes Nathaniel J, Prozialeck Walter C, Lodise Thomas P, Venkatesan Natarajan, O'Donnell J Nicholas, Pais Gwendolyn, Cluff Cameron, Lamar Peter C, Neely Michael N, Gulati Anil, Scheetz Marc H

机构信息

Department of Pharmacy Practice, Chicago College of Pharmacy, Midwestern University, Downers Grove, Illinois, USA Department of Pharmacy, Northwestern Memorial Hospital, Chicago, Illinois, USA.

Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois, USA.

出版信息

Antimicrob Agents Chemother. 2016 Sep 23;60(10):5742-51. doi: 10.1128/AAC.00591-16. Print 2016 Oct.

Abstract

Vancomycin has been associated with acute kidney injury (AKI). However, the pharmacokinetic/toxicodynamic relationship for AKI is not well defined. Allometrically scaled vancomycin exposures were used to assess the relationship between vancomycin exposure and AKI. Male Sprague-Dawley rats received clinical-grade vancomycin in normal saline (NS) as intraperitoneal (i.p.) injections for 24- to 72-h durations with doses ranging 0 to 200 mg/kg of body weight divided once or twice daily. Urine was collected over the protocol's final 24 h. Renal histopathology was qualitatively scored. Urinary biomarkers (e.g., cystatin C, clusterin, kidney injury molecule 1 [KIM-1], osteopontin, lipocalin 2/neutrophil gelatinase-associated lipocalin 2) were assayed using a Luminex xMAP system. Plasma vancomycin concentrations were assayed by high-performance liquid chromatography with UV detection. A three-compartment vancomycin pharmacokinetic model was fit to the data with the Pmetrics package for R. The exposure-response in the first 24 h was evaluated using Spearman's nonparametric correlation coefficient (rs) values for the area under the concentration-time curve during the first 24 h (AUC0-24), the maximum concentration in plasma during the first 24 h (Cmax0-24 ), and the lowest (minimum) concentration in plasma after the dose closest to 24 h (Cmin0-24 ). A total of 52 rats received vancomycin (n = 42) or NS (n = 10). The strongest exposure-response correlations were observed between AUC0-24 and Cmax0-24 and urinary AKI biomarkers. Exposure-response correlations (rs values) for AUC0-24, Cmax0-24 , and Cmin0-24 were 0.37, 0.39, and 0.22, respectively, for clusterin; 0.42, 0.45, and 0.26, respectively, for KIM-1; and 0.52, 0.55, and 0.42, respectively, for osteopontin. However, no differences in histopathological scores were observed. Optimal sampling times after administration of the i.p. dose were 0.25, 0.75, 2.75, and 8 h for the once-daily dosing schemes and 0.25, 1.25, 14.5, and 17.25 h for the twice-daily dosing schemes. Our observations suggest that AUC0-24 or Cmax0-24 correlates with increases in urinary AKI biomarkers.

摘要

万古霉素与急性肾损伤(AKI)有关。然而,AKI的药代动力学/药效学关系尚未明确界定。采用按体表面积折算的万古霉素暴露量来评估万古霉素暴露与AKI之间的关系。雄性Sprague-Dawley大鼠腹腔注射临床级万古霉素于生理盐水中,注射时间为24至72小时,剂量范围为0至200mg/kg体重,每日分一次或两次给药。在实验方案的最后24小时收集尿液。对肾脏组织病理学进行定性评分。使用Luminex xMAP系统检测尿液生物标志物(如胱抑素C、簇集素、肾损伤分子1 [KIM-1]、骨桥蛋白、脂质运载蛋白2/中性粒细胞明胶酶相关脂质运载蛋白2)。采用高效液相色谱-紫外检测法测定血浆万古霉素浓度。使用R语言的Pmetrics软件包将三室万古霉素药代动力学模型拟合到数据中。使用Spearman非参数相关系数(rs)值评估前24小时内浓度-时间曲线下面积(AUC0-24)、前24小时血浆中的最大浓度(Cmax0-24)以及最接近24小时剂量后血浆中的最低(最小)浓度(Cmin0-24)与AKI的暴露-反应关系。共有52只大鼠接受了万古霉素(n = 42)或生理盐水(n = 10)。在AUC0-24与Cmax0-24以及尿液AKI生物标志物之间观察到最强的暴露-反应相关性。簇集素的AUC0-24、Cmax0-24和Cmin0-24的暴露-反应相关性(rs值)分别为0.37、0.39和0.22;KIM-1分别为0.42、0.45和0.26;骨桥蛋白分别为0.52、0.55和0.42。然而,未观察到组织病理学评分的差异。对于每日一次给药方案,腹腔注射后最佳采样时间为0.25、0.75、2.75和8小时;对于每日两次给药方案,最佳采样时间为0.25、1.25、14.5和17.25小时。我们的观察结果表明,AUC0-24或Cmax0-24与尿液AKI生物标志物的增加相关。

相似文献

1
Evaluation of Vancomycin Exposures Associated with Elevations in Novel Urinary Biomarkers of Acute Kidney Injury in Vancomycin-Treated Rats.
Antimicrob Agents Chemother. 2016 Sep 23;60(10):5742-51. doi: 10.1128/AAC.00591-16. Print 2016 Oct.
2
24-Hour Pharmacokinetic Relationships for Vancomycin and Novel Urinary Biomarkers of Acute Kidney Injury.
Antimicrob Agents Chemother. 2017 Oct 24;61(11). doi: 10.1128/AAC.00416-17. Print 2017 Nov.
4
Comparative Performance of Urinary Biomarkers for Vancomycin-Induced Kidney Injury According to Timeline of Injury.
Antimicrob Agents Chemother. 2019 Jun 24;63(7). doi: 10.1128/AAC.00079-19. Print 2019 Jul.
5
Serum and urinary biomarkers of vancomycin-induced acute kidney injury: A prospective, observational analysis.
Medicine (Baltimore). 2024 Aug 9;103(32):e39202. doi: 10.1097/MD.0000000000039202.
7
Impact of humanized vancomycin infusion on kidney function and kidney injury in a translational rat model.
Int J Antimicrob Agents. 2024 May;63(5):107118. doi: 10.1016/j.ijantimicag.2024.107118. Epub 2024 Feb 26.
8
Impact of Vancomycin Loading Doses and Dose Escalation on Glomerular Function and Kidney Injury Biomarkers in a Translational Rat Model.
Antimicrob Agents Chemother. 2023 Feb 16;67(2):e0127622. doi: 10.1128/aac.01276-22. Epub 2023 Jan 17.

引用本文的文献

2
Pharmacokinetic approaches to standardize antiviral exposure in cerebrospinal fluid.
Pharmacotherapy. 2025 May;45(5):251-263. doi: 10.1002/phar.70013. Epub 2025 Mar 28.
3
Urinary Biomarkers and Attainment of Cefepime Therapeutic Targets in Critically Ill Children.
Pediatr Infect Dis J. 2025 Mar 7;44(8):749-754. doi: 10.1097/INF.0000000000004784.
4
Big Data Bayesian Truths: No Vancomycin Trough Concentration Target Is Sufficiently Precise for Safety or Efficacy.
Open Forum Infect Dis. 2025 Feb 6;12(3):ofaf041. doi: 10.1093/ofid/ofaf041. eCollection 2025 Mar.
5
Protamine protects against vancomycin-induced kidney injury.
Antimicrob Agents Chemother. 2025 Feb 13;69(2):e0123624. doi: 10.1128/aac.01236-24. Epub 2025 Jan 17.
10
Impact of Vancomycin Loading Doses and Dose Escalation on Glomerular Function and Kidney Injury Biomarkers in a Translational Rat Model.
Antimicrob Agents Chemother. 2023 Feb 16;67(2):e0127622. doi: 10.1128/aac.01276-22. Epub 2023 Jan 17.

本文引用的文献

1
Pharmacokinetics of centhaquin citrate in a rat model.
J Pharm Pharmacol. 2016 Jan;68(1):56-62. doi: 10.1111/jphp.12498. Epub 2016 Jan 4.
2
3
Indications and Types of Antibiotic Agents Used in 6 Acute Care Hospitals, 2009-2010: A Pragmatic Retrospective Observational Study.
Infect Control Hosp Epidemiol. 2016 Jan;37(1):70-9. doi: 10.1017/ice.2015.226. Epub 2015 Oct 12.
4
Optimal timing of oral fosfomycin administration for pre-prostate biopsy prophylaxis.
J Antimicrob Chemother. 2015 Jul;70(7):2068-73. doi: 10.1093/jac/dkv067. Epub 2015 Mar 22.
5
Impact of vancomycin treatment duration and dose on kidney injury.
Int J Antimicrob Agents. 2014 Mar;43(3):297-8. doi: 10.1016/j.ijantimicag.2013.11.004. Epub 2013 Dec 7.
6
Difference in nephrotoxicity of vancomycin administered once daily and twice daily in rats.
J Chemother. 2013 Oct;25(5):273-8. doi: 10.1179/1973947812Y.0000000067.
7
Pharmacodynamic target attainment for various ceftazidime dosing schemes in high-flux hemodialysis.
Antimicrob Agents Chemother. 2013 Dec;57(12):5854-9. doi: 10.1128/AAC.00474-13. Epub 2013 Sep 9.
8
Two general methods for population pharmacokinetic modeling: non-parametric adaptive grid and non-parametric Bayesian.
J Pharmacokinet Pharmacodyn. 2013 Apr;40(2):189-99. doi: 10.1007/s10928-013-9302-8. Epub 2013 Feb 13.
10
Evaluation of novel acute urinary rat kidney toxicity biomarker for subacute toxicity studies in preclinical trials.
Toxicol Pathol. 2012 Oct;40(7):1031-48. doi: 10.1177/0192623312444618. Epub 2012 May 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验