Kinio Steven, Mills James K
Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, M5S 3G8, Canada.
Biomed Microdevices. 2016 Aug;18(4):69. doi: 10.1007/s10544-016-0085-8.
Dielectrophoretic (DEP) forces applied to microscopic particles are highly dependent on the gradient of the electric field experienced by the particles. These DEP forces can be used to selectively capture and remove cells from fluid flows within a micro-channel above the DEP electrodes. Modification of the geometry of the electrodes that generate the electric field is the main approach available to increase the electric field gradient over a wide area, and hence increase the applied dielectrophoretic force. Optimized DEP forces increase attraction or repulsion of target cells from the electrode surface, enhancing the efficacy of electrodes for cell sorting applications. In this paper, we present a design approach, using genetic optimization techniques, to develop novel electrode geometries that effectively capture target particles. The performance of candidate electrode designs is evaluated by calculating simplified particle trajectories.
施加于微观粒子的介电泳(DEP)力高度依赖于粒子所经历的电场梯度。这些DEP力可用于在DEP电极上方的微通道内从流体流中选择性地捕获和去除细胞。改变产生电场的电极几何形状是在大面积上增加电场梯度从而增加所施加的介电泳力的主要可用方法。优化的DEP力可增强目标细胞与电极表面的吸引或排斥,提高电极在细胞分选应用中的功效。在本文中,我们提出一种使用遗传优化技术的设计方法,以开发能有效捕获目标粒子的新型电极几何形状。通过计算简化的粒子轨迹来评估候选电极设计的性能。