Department of Chemistry, University of Michigan , 930 N. University Ave., Ann Arbor, Michigan 48109, United States.
Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California at San Francisco , 675 Nelson Rising Ln., San Francisco, California 94158, United States.
Anal Chem. 2016 Aug 16;88(16):8272-8. doi: 10.1021/acs.analchem.6b02126. Epub 2016 Jul 28.
Capillary electrophoresis (CE) has been identified as a useful platform for detecting, quantifying, and screening for modulators of protein-protein interactions (PPIs). In this method, one protein binding partner is labeled with a fluorophore, the protein binding partners are mixed, and then, the complex is separated from free protein to allow direct determination of bound to free ratios. Although it possesses many advantages for PPI studies, the method is limited by the need to have separation conditions that both prevent protein adsorption to capillary and maintain protein interactions during the separation. In this work, we use protein cross-linking capillary electrophoresis (PXCE) to overcome this limitation. In PXCE, the proteins are cross-linked under binding conditions and then separated. This approach eliminates the need to maintain noncovalent interactions during electrophoresis and facilitates method development. We report PXCE methods for an antibody-antigen interaction and heterodimer and homodimer heat shock protein complexes. Complexes are cross-linked by short treatments with formaldehyde after reaching binding equilibrium. Cross-linked complexes are separated by electrophoretic mobility using free solution CE or by size using sieving electrophoresis of SDS complexes. The method gives good quantitative results; e.g., a lysozyme-antibody interaction was found to have Kd = 24 ± 3 nM by PXCE and Kd = 17 ± 2 nM using isothermal calorimetry (ITC). Heat shock protein 70 (Hsp70) in complex with bcl2 associated athanogene 3 (Bag3) was found to have Kd = 25 ± 5 nM by PXCE which agrees with Kd values reported without cross-linking. Hsp70-Bag3 binding site mutants and small molecule inhibitors of Hsp70-Bag3 were characterized by PXCE with good agreement to inhibitory constants and IC50 values obtained by a bead-based flow cytometry protein interaction assay (FCPIA). PXCE allows rapid method development for quantitative analysis of PPIs.
毛细管电泳(CE)已被确定为一种有用的平台,可用于检测、定量和筛选蛋白质-蛋白质相互作用(PPIs)的调节剂。在这种方法中,一个蛋白质结合伴侣用荧光团标记,将蛋白质结合伴侣混合,然后将复合物从游离蛋白质中分离出来,以直接测定结合物与游离物的比例。尽管该方法在 PPI 研究中具有许多优势,但由于需要分离条件,以防止蛋白质吸附到毛细管上并在分离过程中保持蛋白质相互作用,该方法受到限制。在这项工作中,我们使用蛋白质交联毛细管电泳(PXCE)来克服这一限制。在 PXCE 中,蛋白质在结合条件下交联,然后分离。这种方法消除了在电泳过程中维持非共价相互作用的需要,并促进了方法的开发。我们报告了用于抗体-抗原相互作用和异二聚体和同二聚体热休克蛋白复合物的 PXCE 方法。复合物在达到结合平衡后,用短时间的甲醛处理进行交联。通过自由溶液 CE 或通过 SDS 复合物的筛分电泳分离交联复合物的电泳迁移率。该方法给出了良好的定量结果;例如,通过 PXCE 发现溶菌酶-抗体相互作用的 Kd = 24 ± 3 nM,通过等温量热法(ITC)发现 Kd = 17 ± 2 nM。热休克蛋白 70(Hsp70)与 bcl2 相关抗凋亡蛋白 3(Bag3)的复合物通过 PXCE 发现 Kd = 25 ± 5 nM,与没有交联时报告的 Kd 值一致。Hsp70-Bag3 结合位点突变体和 Hsp70-Bag3 的小分子抑制剂通过 PXCE 进行了表征,与基于珠的流式细胞术蛋白质相互作用测定(FCPIA)获得的抑制常数和 IC50 值具有良好的一致性。PXCE 允许快速开发用于定量分析 PPI 的方法。