School of Chemistry and CRANN, University of Dublin, Trinity College , College Green, Dublin 2, Ireland.
Macromolecular Chemistry Group (Buwmakro) and Institute for Polymer Technology, Bergische Universität Wuppertal , Gauss-Str. 20, D-42119 Wuppertal, Germany.
Langmuir. 2016 Aug 16;32(32):8141-53. doi: 10.1021/acs.langmuir.6b01828. Epub 2016 Aug 5.
The selective engineering of conjugated polyelectrolyte (CPE)-phospholipid interfaces is poised to play a key role in the design of advanced biomedical and biotechnological devices. Herein, we report a strategic study to investigate the relationship between the charge of the CPE side group and their association with zwitterionic phospholipid bilayers. The interaction of dipalmitoylphosphatidylcholine (DPPC) phospholipid vesicles with a series of poly(thiophene)s bearing zwitterionic, cationic, or anionic terminal groups (P3Zwit, P3TMAHT and P3Anionic, respectively) has been probed. Although all CPEs showed an affinity for the zwitterionic vesicles, the calculated partition coefficients determined using photoluminescence spectroscopy suggested preferential incorporation within the lipid bilayer in the order P3Zwit > P3Anionic ≫ P3TMAHT. The polarity probe Prodan was used to further qualify the position of the CPE inside the vesicle bilayers via Förster resonance energy transfer (FRET) studies. The varying proximity of the CPEs to Prodan was reflected in the Stern-Volmer quenching constants and decreased in the order P3Anionic > P3TMAHT ≫ P3Zwit. Dynamic light scattering measurements showed an increase in the hydrodynamic diameter of the DPPC vesicles upon addition of each poly(thiophene), but to the greatest extent for P3Anionic. Small-angle neutron scattering studies also revealed that P3Anionic specifically increased the thickness of the headgroup region of the phospholipid bilayer. Epifluorescence and atomic force microscopy imaging showed that P3TMAHT formed amorphous agglomerates on the vesicle surface, P3Zwit was buried throughout the bilayer, and P3Anionic formed a shell of protruding chains around the surface, which promoted vesicle fusion. The global data indicate three distinctive modes of interaction for the poly(thiophene)s within DPPC vesicles, whereby the nature of the association is ultimately controlled by the pendant charge group on each CPE chain. Our results suggest that charge-mediated self-assembly may provide a simple and effective route to design luminescent CPE probes capable of specific localization within phospholipid membranes.
聚电解质(CPE)-磷脂界面的选择性工程有望在先进的生物医学和生物技术设备的设计中发挥关键作用。在此,我们报告了一项战略性研究,旨在调查 CPE 侧基电荷与其与两性离子磷脂双层的关联之间的关系。研究了一系列带有两性离子、阳离子或阴离子末端基团的聚(噻吩)(P3Zwit、P3TMAHT 和 P3Anionic)与二棕榈酰磷脂酰胆碱(DPPC)磷脂囊泡的相互作用。尽管所有 CPE 都对两性离子囊泡表现出亲和力,但使用荧光光谱法计算的分配系数表明,在脂质双层中的优先掺入顺序为 P3Zwit > P3Anionic > P3TMAHT。极性探针 Prodan 用于通过荧光共振能量转移(FRET)研究进一步确定 CPE 在囊泡双层中的位置。CPE 与 Prodan 的接近程度的变化反映在 Stern-Volmer 猝灭常数中,并按 P3Anionic > P3TMAHT > P3Zwit 的顺序降低。动态光散射测量表明,每种聚(噻吩)的加入都会增加 DPPC 囊泡的水动力直径,但 P3Anionic 的增加最大。小角中子散射研究还表明,P3Anionic 特异性增加了磷脂双层头部区域的厚度。荧光和原子力显微镜成像表明,P3TMAHT 在囊泡表面形成无定形聚集体,P3Zwit 埋藏在整个双层中,P3Anionic 在表面周围形成突出链的壳,促进囊泡融合。总体数据表明,聚(噻吩)在 DPPC 囊泡中有三种不同的相互作用模式,其中关联的性质最终由每个 CPE 链上的侧基电荷基团控制。我们的结果表明,电荷介导的自组装可能为设计能够在磷脂膜内特定定位的发光 CPE 探针提供一种简单有效的途径。