Suppr超能文献

用于膝关节骨关节炎诊断训练的振动关节造影信号合成

Synthesis of vibroarthrographic signals in knee osteoarthritis diagnosis training.

作者信息

Shieh Chin-Shiuh, Tseng Chin-Dar, Chang Li-Yun, Lin Wei-Chun, Wu Li-Fu, Wang Hung-Yu, Chao Pei-Ju, Chiu Chien-Liang, Lee Tsair-Fwu

机构信息

Medical Physics and Informatics Laboratory of Electronics Engineering, National Kaohsiung University of Applied Sciences, 415, Chien Kung Road, San-Min District, Kaohsiung, 807, Taiwan, ROC.

Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan, ROC.

出版信息

BMC Res Notes. 2016 Jul 19;9:352. doi: 10.1186/s13104-016-2156-6.

Abstract

BACKGROUND

Vibroarthrographic (VAG) signals are used as useful indicators of knee osteoarthritis (OA) status. The objective was to build a template database of knee crepitus sounds. Internships can practice in the template database to shorten the time of training for diagnosis of OA.

METHODS

A knee sound signal was obtained using an innovative stethoscope device with a goniometer. Each knee sound signal was recorded with a Kellgren-Lawrence (KL) grade. The sound signal was segmented according to the goniometer data. The signal was Fourier transformed on the correlated frequency segment. An inverse Fourier transform was performed to obtain the time-domain signal. Haar wavelet transform was then done. The median and mean of the wavelet coefficients were chosen to inverse transform the synthesized signal in each KL category. The quality of the synthesized signal was assessed by a clinician.

RESULTS

The sample signals were evaluated using different algorithms (median and mean). The accuracy rate of the median coefficient algorithm (93 %) was better than the mean coefficient algorithm (88 %) for cross-validation by a clinician using synthesis of VAG.

CONCLUSIONS

The artificial signal we synthesized has the potential to build a learning system for medical students, internships and para-medical personnel for the diagnosis of OA. Therefore, our method provides a feasible way to evaluate crepitus sounds that may assist in the diagnosis of knee OA.

摘要

背景

振动关节造影(VAG)信号被用作膝关节骨关节炎(OA)状态的有用指标。目的是建立一个膝关节摩擦音的模板数据库。实习生可在模板数据库中进行练习,以缩短OA诊断的培训时间。

方法

使用一种带有测角计的创新听诊器设备获取膝关节声音信号。每个膝关节声音信号都记录有凯尔格伦-劳伦斯(KL)分级。根据测角计数据对声音信号进行分段。对相关频率段的信号进行傅里叶变换。进行傅里叶逆变换以获得时域信号。然后进行哈尔小波变换。选择小波系数的中位数和均值对每个KL类别中的合成信号进行逆变换。由一名临床医生评估合成信号的质量。

结果

使用不同算法(中位数和均值)对样本信号进行评估。在临床医生使用VAG合成进行交叉验证时,中位数系数算法的准确率(93%)优于均值系数算法(88%)。

结论

我们合成的人工信号有潜力为医学生、实习生和辅助医疗人员建立一个用于OA诊断的学习系统。因此,我们的方法为评估可能有助于膝关节OA诊断的摩擦音提供了一种可行的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05f2/4950531/a4884d1552ea/13104_2016_2156_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验