State Key Laboratory of Agricultural Microbiology, College of Science, College of Food Science and Technology, Huazhong Agricultural University , Wuhan 430070, People's Republic of China.
School of Chemistry and Chemical Engineering, Guangxi University for Nationalities , Nanning 530008, People's Republic of China.
Anal Chem. 2016 Aug 16;88(16):8179-87. doi: 10.1021/acs.analchem.6b01935. Epub 2016 Jul 29.
Dual-signaling ratiometric electrochemiluminescence (ECL) technology has attracted particular attention in analytical science due to its precise measurement to normalize variation in environmental changes. Creating new mated ECL report units with two emitting states and improving the detection sensitivity are major challenges for ratiometric ECL measurement. Here, we fabricate an ultrasensitive near-infrared ratiometric ECL aptasensor based on a dual-potential signal amplification strategy triggered by the quencher/enhancer [graphene/hemin/gold nanorods/G-quadruplex-hemin (rGO-H-AuNRs-G4H) composite]. The composite was initially prepared through three consecutive steps: the π-π stacking interaction between hemin and graphene, in-site growth of AuNRs, and surface ligand exchange. Dual ECL quenching of quantum dots (QDs) and multiple signal enhancement of luminol can be achieved simultaneously by the fabrication of the sandwich "thrombin aptamer I (TBA1)-TB-TBA2 (rGO-H-AuNRs-G4H)" mode: (i) the formation of three-dimensional G-quadruplex between aptamer and thrombin not only shortens the distance between the donor (QDs) and receptor (rGO-H and AuNRs) to trigger electrochemiluminescence energy transfer but also provides the place for intercalating hemin; (ii) the hemin intercalated into G4 structure and hemin connected onto rGO together with AuNRs/rGO nanomaterials can achieve the multiple peroxidase-like catalysis of H2O2 to greatly enhance the ECL of luminol. The ratiometric ECL aptasensor self-calibrated by the internal reference (luminol or QDs) exhibits ultrasensitive and accurate analytical performance toward thrombin (TB) with a linear detection range from 100 ng/mL to 0.5 pg/mL and a detection limit of 4.2 fg/mL [defined as signal-to-noise ratio (S/N) = 3].
双信号比色电化学发光(ECL)技术由于能够精确测量环境变化的变化,因此在分析科学中引起了特别关注。创建具有两种发射状态的新配对 ECL 报告单元并提高检测灵敏度是比色 ECL 测量的主要挑战。在这里,我们基于猝灭剂/增强剂[石墨烯/血红素/金纳米棒/ G-四链体-血红素(rGO-H-AuNRs-G4H)复合材料]引发的双电位信号放大策略,构建了一种超灵敏的近红外比色 ECL 适体传感器。该复合材料最初通过三个连续步骤制备:血红素和石墨烯之间的π-π堆积相互作用,原位生长的 AuNRs 和表面配体交换。通过构建三明治“凝血酶适体 I(TBA1)-TB-TBA2(rGO-H-AuNRs-G4H)”模式,可以同时实现量子点(QDs)的双 ECL 猝灭和鲁米诺的多种信号增强:(i)适体与凝血酶之间形成三维 G-四链体不仅缩短了供体(QDs)和受体(rGO-H 和 AuNRs)之间的距离,以引发电致化学发光能量转移,而且还提供了嵌入血红素的位置;(ii)嵌入 G4 结构中的血红素以及与 rGO 一起连接的 AuNRs/rGO 纳米材料可以实现 H2O2 的多种过氧化物酶样催化,从而大大增强鲁米诺的 ECL。由内部参考(鲁米诺或 QDs)自校准的比率型 ECL 适体传感器对凝血酶(TB)表现出超灵敏和准确的分析性能,线性检测范围为 100 ng/mL 至 0.5 pg/mL,检测限为 4.2 fg/mL[定义为信噪比(S/N)= 3]。