Zech John, Husk Gregg, Moore Thomas, Shapiro Jason S
Icahn School of Medicine at Mount Sinai , New York, NY, USA.
Lenox Hill Hospital , New York, NY, USA.
Appl Clin Inform. 2016 May 11;7(2):330-40. doi: 10.4338/ACI-2015-11-RA-0158. eCollection 2016.
Health information exchange (HIE) facilitates the exchange of patient information across different healthcare organizations. To match patient records across sites, HIEs usually rely on a master patient index (MPI), a database responsible for determining which medical records at different healthcare facilities belong to the same patient. A single patient's records may be improperly split across multiple profiles in the MPI.
We investigated the how often two individuals shared the same first name, last name, and date of birth in the Social Security Death Master File (SSDMF), a US government database containing over 85 million individuals, to determine the feasibility of using exact matching as a split record detection tool. We demonstrated how a method based on exact record matching could be used to partially measure the degree of probable split patient records in the MPI of an HIE.
We calculated the percentage of individuals who were uniquely identified in the SSDMF using first name, last name, and date of birth. We defined a measure consisting of the average number of unique identifiers associated with a given first name, last name, and date of birth. We calculated a reference value for this measure on a subsample of SSDMF data. We compared this measure value to data from a functioning HIE.
We found that it was unlikely for two individuals to share the same first name, last name, and date of birth in a large US database including over 85 million individuals. 98.81% of individuals were uniquely identified in this dataset using only these three items. We compared the value of our measure on a subsample of Social Security data (1.00089) to that of HIE data (1.1238) and found a significant difference (t-test p-value < 0.001).
This method may assist HIEs in detecting split patient records.
健康信息交换(HIE)促进了患者信息在不同医疗保健机构之间的交换。为了在不同地点匹配患者记录,HIE通常依赖于主患者索引(MPI),这是一个负责确定不同医疗保健机构的哪些医疗记录属于同一患者的数据库。单个患者的记录可能会在MPI中的多个档案中被不当拆分。
我们调查了在美国政府数据库社会保障死亡主文件(SSDMF)中,两个人拥有相同名字、姓氏和出生日期的频率,该数据库包含超过8500万个人,以确定使用精确匹配作为拆分记录检测工具的可行性。我们展示了如何使用基于精确记录匹配的方法来部分测量HIE的MPI中可能的患者记录拆分程度。
我们计算了在SSDMF中使用名字、姓氏和出生日期唯一识别的个体百分比。我们定义了一个由与给定名字、姓氏和出生日期相关联的唯一标识符的平均数量组成的度量。我们在SSDMF数据的子样本上计算了该度量的参考值。我们将此度量值与一个运行中的HIE的数据进行了比较。
我们发现在一个包含超过8500万个体的大型美国数据库中,两个人共享相同名字、姓氏和出生日期的可能性不大。仅使用这三项,98.81%的个体在该数据集中被唯一识别。我们将社会保障数据子样本上的度量值(1.00089)与HIE数据的度量值(1.1238)进行比较,发现存在显著差异(t检验p值<0.001)。
该方法可能有助于HIE检测拆分的患者记录。