Suppr超能文献

使用精确匹配来测量健康信息交换中不匹配患者记录的程度。

Measuring the Degree of Unmatched Patient Records in a Health Information Exchange Using Exact Matching.

作者信息

Zech John, Husk Gregg, Moore Thomas, Shapiro Jason S

机构信息

Icahn School of Medicine at Mount Sinai , New York, NY, USA.

Lenox Hill Hospital , New York, NY, USA.

出版信息

Appl Clin Inform. 2016 May 11;7(2):330-40. doi: 10.4338/ACI-2015-11-RA-0158. eCollection 2016.

Abstract

BACKGROUND

Health information exchange (HIE) facilitates the exchange of patient information across different healthcare organizations. To match patient records across sites, HIEs usually rely on a master patient index (MPI), a database responsible for determining which medical records at different healthcare facilities belong to the same patient. A single patient's records may be improperly split across multiple profiles in the MPI.

OBJECTIVES

We investigated the how often two individuals shared the same first name, last name, and date of birth in the Social Security Death Master File (SSDMF), a US government database containing over 85 million individuals, to determine the feasibility of using exact matching as a split record detection tool. We demonstrated how a method based on exact record matching could be used to partially measure the degree of probable split patient records in the MPI of an HIE.

METHODS

We calculated the percentage of individuals who were uniquely identified in the SSDMF using first name, last name, and date of birth. We defined a measure consisting of the average number of unique identifiers associated with a given first name, last name, and date of birth. We calculated a reference value for this measure on a subsample of SSDMF data. We compared this measure value to data from a functioning HIE.

RESULTS

We found that it was unlikely for two individuals to share the same first name, last name, and date of birth in a large US database including over 85 million individuals. 98.81% of individuals were uniquely identified in this dataset using only these three items. We compared the value of our measure on a subsample of Social Security data (1.00089) to that of HIE data (1.1238) and found a significant difference (t-test p-value < 0.001).

CONCLUSIONS

This method may assist HIEs in detecting split patient records.

摘要

背景

健康信息交换(HIE)促进了患者信息在不同医疗保健机构之间的交换。为了在不同地点匹配患者记录,HIE通常依赖于主患者索引(MPI),这是一个负责确定不同医疗保健机构的哪些医疗记录属于同一患者的数据库。单个患者的记录可能会在MPI中的多个档案中被不当拆分。

目的

我们调查了在美国政府数据库社会保障死亡主文件(SSDMF)中,两个人拥有相同名字、姓氏和出生日期的频率,该数据库包含超过8500万个人,以确定使用精确匹配作为拆分记录检测工具的可行性。我们展示了如何使用基于精确记录匹配的方法来部分测量HIE的MPI中可能的患者记录拆分程度。

方法

我们计算了在SSDMF中使用名字、姓氏和出生日期唯一识别的个体百分比。我们定义了一个由与给定名字、姓氏和出生日期相关联的唯一标识符的平均数量组成的度量。我们在SSDMF数据的子样本上计算了该度量的参考值。我们将此度量值与一个运行中的HIE的数据进行了比较。

结果

我们发现在一个包含超过8500万个体的大型美国数据库中,两个人共享相同名字、姓氏和出生日期的可能性不大。仅使用这三项,98.81%的个体在该数据集中被唯一识别。我们将社会保障数据子样本上的度量值(1.00089)与HIE数据的度量值(1.1238)进行比较,发现存在显著差异(t检验p值<0.001)。

结论

该方法可能有助于HIE检测拆分的患者记录。

相似文献

1
Measuring the Degree of Unmatched Patient Records in a Health Information Exchange Using Exact Matching.
Appl Clin Inform. 2016 May 11;7(2):330-40. doi: 10.4338/ACI-2015-11-RA-0158. eCollection 2016.
2
Evaluating the effect of data standardization and validation on patient matching accuracy.
J Am Med Inform Assoc. 2019 May 1;26(5):447-456. doi: 10.1093/jamia/ocy191.
8
A Review of Current Patient Matching Techniques.
Stud Health Technol Inform. 2017;238:205-208.
9
Patients' perceptions of a health information exchange: a pilot program in South Korea.
Int J Med Inform. 2013 Feb;82(2):98-107. doi: 10.1016/j.ijmedinf.2012.05.001. Epub 2012 May 30.
10
Matching identifiers in electronic health records: implications for duplicate records and patient safety.
BMJ Qual Saf. 2013 Mar;22(3):219-24. doi: 10.1136/bmjqs-2012-001419. Epub 2013 Jan 29.

本文引用的文献

1
Identifying homelessness using health information exchange data.
J Am Med Inform Assoc. 2015 May;22(3):682-7. doi: 10.1093/jamia/ocu005. Epub 2015 Feb 10.
2
A benchmark comparison of deterministic and probabilistic methods for defining manual review datasets in duplicate records reconciliation.
J Am Med Inform Assoc. 2014 Jan-Feb;21(1):97-104. doi: 10.1136/amiajnl-2013-001744. Epub 2013 May 23.
3
Matching identifiers in electronic health records: implications for duplicate records and patient safety.
BMJ Qual Saf. 2013 Mar;22(3):219-24. doi: 10.1136/bmjqs-2012-001419. Epub 2013 Jan 29.
4
Duplicate patient records--implication for missed laboratory results.
AMIA Annu Symp Proc. 2012;2012:1269-75. Epub 2012 Nov 3.
6
Health services research and data linkages: issues, methods, and directions for the future.
Health Serv Res. 2010 Oct;45(5 Pt 2):1468-88. doi: 10.1111/j.1475-6773.2010.01142.x. Epub 2010 Aug 2.
7
Record Linkage system in a complex relational database - MINPHIS example.
Stud Health Technol Inform. 2010;160(Pt 2):1127-30.
10
Medical record linkage in health information systems by approximate string matching and clustering.
BMC Med Inform Decis Mak. 2005 Oct 11;5:32. doi: 10.1186/1472-6947-5-32.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验