Suppr超能文献

为何患者匹配是一项挑战:关于主患者索引(MPI)关键识别字段中数据差异的研究

Why Patient Matching Is a Challenge: Research on Master Patient Index (MPI) Data Discrepancies in Key Identifying Fields.

作者信息

Just Beth Haenke, Marc David, Munns Megan, Sandefer Ryan

机构信息

Just Associates in Centennial, CO.

College of St. Scholastica in Duluth, MN.

出版信息

Perspect Health Inf Manag. 2016 Apr 1;13(Spring):1e. eCollection 2016.

Abstract

Patient identification matching problems are a major contributor to data integrity issues within electronic health records. These issues impede the improvement of healthcare quality through health information exchange and care coordination, and contribute to deaths resulting from medical errors. Despite best practices in the area of patient access and medical record management to avoid duplicating patient records, duplicate records continue to be a significant problem in healthcare. This study examined the underlying causes of duplicate records using a multisite data set of 398,939 patient records with confirmed duplicates and analyzed multiple reasons for data discrepancies between those record matches. The field that had the greatest proportion of mismatches (nondefault values) was the middle name, accounting for 58.30 percent of mismatches. The Social Security number was the second most frequent mismatch, occurring in 53.54 percent of the duplicate pairs. The majority of the mismatches in the name fields were the result of misspellings (53.14 percent in first name and 33.62 percent in last name) or swapped last name/first name, first name/middle name, or last name/middle name pairs. The use of more sophisticated technologies is critical to improving patient matching. However, no amount of advanced technology or increased data capture will completely eliminate human errors. Thus, the establishment of policies and procedures (such as standard naming conventions or search routines) for front-end and back-end staff to follow is foundational for the overall data integrity process. Training staff on standard policies and procedures will result in fewer duplicates created on the front end and more accurate duplicate record matching and merging on the back end. Furthermore, monitoring, analyzing trends, and identifying errors that occur are proactive ways to identify data integrity issues.

摘要

患者身份匹配问题是电子健康记录中数据完整性问题的主要原因。这些问题阻碍了通过健康信息交换和护理协调来提高医疗质量,并导致医疗差错造成的死亡。尽管在患者访问和病历管理方面有最佳实践以避免重复患者记录,但重复记录在医疗保健中仍然是一个重大问题。本研究使用包含398,939份确诊重复患者记录的多站点数据集,研究了重复记录的根本原因,并分析了这些记录匹配之间数据差异的多种原因。不匹配比例最高(非默认值)的字段是中间名,占不匹配的58.30%。社会安全号码是第二常见的不匹配项,出现在53.54%的重复对中。名字字段中的大多数不匹配是拼写错误(名字中为53.14%,姓氏中为33.62%)或姓氏/名字、名字/中间名或姓氏/中间名对互换的结果。使用更先进的技术对于改善患者匹配至关重要。然而,再多的先进技术或增加的数据采集都无法完全消除人为错误。因此,为前端和后端工作人员制定政策和程序(如标准命名惯例或搜索例程)以供遵循,是整个数据完整性过程的基础。对工作人员进行标准政策和程序培训将减少前端创建的重复记录,并在后端实现更准确的重复记录匹配和合并。此外,监测、分析趋势以及识别出现的错误是识别数据完整性问题的积极方法。

相似文献

2
Matching identifiers in electronic health records: implications for duplicate records and patient safety.
BMJ Qual Saf. 2013 Mar;22(3):219-24. doi: 10.1136/bmjqs-2012-001419. Epub 2013 Jan 29.
3
Measuring the Degree of Unmatched Patient Records in a Health Information Exchange Using Exact Matching.
Appl Clin Inform. 2016 May 11;7(2):330-40. doi: 10.4338/ACI-2015-11-RA-0158. eCollection 2016.
4
Overcoming Challenges of Merging Multiple Patient Identification and Matching Systems: A Case Study.
Perspect Health Inf Manag. 2020 Dec 7;18(Winter):1n. eCollection 2021 Winter.
7
Evaluating the effect of data standardization and validation on patient matching accuracy.
J Am Med Inform Assoc. 2019 May 1;26(5):447-456. doi: 10.1093/jamia/ocy191.
8
A pragmatics' view of patient identification.
Qual Saf Health Care. 2010 Oct;19 Suppl 3:i13-9. doi: 10.1136/qshc.2009.036400. Epub 2010 May 31.
9
5 ways to minimize duplicate patient records.
Healthc Financ Manage. 2013 Jul;67(7):28.

引用本文的文献

1
Epidemiology of Patient Record Duplication.
Appl Clin Inform. 2025 Jan;16(1):24-30. doi: 10.1055/a-2423-8499. Epub 2024 Sep 27.
2
Navigating duplication in pharmacovigilance databases: a scoping review.
BMJ Open. 2024 Apr 29;14(4):e081990. doi: 10.1136/bmjopen-2023-081990.
3
[Digital patient journey : A world of connectivity].
Radiologie (Heidelb). 2023 Oct;63(10):766-770. doi: 10.1007/s00117-023-01204-w. Epub 2023 Sep 5.
4
Electronic health record data quality assessment and tools: a systematic review.
J Am Med Inform Assoc. 2023 Sep 25;30(10):1730-1740. doi: 10.1093/jamia/ocad120.
5
Patient Identification and Tumor Identification Management: Quality Program in a Cancer Multicentric Clinical Data Warehouse.
Cancer Inform. 2023 May 19;22:11769351231172609. doi: 10.1177/11769351231172609. eCollection 2023.
6
Data Challenges for Externally Controlled Trials: Viewpoint.
J Med Internet Res. 2023 Apr 5;25:e43484. doi: 10.2196/43484.
7
Digital Health Data Quality Issues: Systematic Review.
J Med Internet Res. 2023 Mar 31;25:e42615. doi: 10.2196/42615.
9
Blockchain for Modern Applications: A Survey.
Sensors (Basel). 2022 Jul 14;22(14):5274. doi: 10.3390/s22145274.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验