Suppr超能文献

评估数据标准化和验证对患者匹配准确性的影响。

Evaluating the effect of data standardization and validation on patient matching accuracy.

机构信息

Regenstrief Institute, Inc, Center for Biomedical Informatics, Indianapolis, Indiana, USA.

School of Medicine, Department of Family Medicine, Indiana University, Indianapolis, Indiana, USA.

出版信息

J Am Med Inform Assoc. 2019 May 1;26(5):447-456. doi: 10.1093/jamia/ocy191.

Abstract

OBJECTIVE

This study evaluated the degree to which recommendations for demographic data standardization improve patient matching accuracy using real-world datasets.

MATERIALS AND METHODS

We used 4 manually reviewed datasets, containing a random selection of matches and nonmatches. Matching datasets included health information exchange (HIE) records, public health registry records, Social Security Death Master File records, and newborn screening records. Standardized fields including last name, telephone number, social security number, date of birth, and address. Matching performance was evaluated using 4 metrics: sensitivity, specificity, positive predictive value, and accuracy.

RESULTS

Standardizing address was independently associated with improved matching sensitivities for both the public health and HIE datasets of approximately 0.6% and 4.5%. Overall accuracy was unchanged for both datasets due to reduced match specificity. We observed no similar impact for address standardization in the death master file dataset. Standardizing last name yielded improved matching sensitivity of 0.6% for the HIE dataset, while overall accuracy remained the same due to a decrease in match specificity. We noted no similar impact for other datasets. Standardizing other individual fields (telephone, date of birth, or social security number) showed no matching improvements. As standardizing address and last name improved matching sensitivity, we examined the combined effect of address and last name standardization, which showed that standardization improved sensitivity from 81.3% to 91.6% for the HIE dataset.

CONCLUSIONS

Data standardization can improve match rates, thus ensuring that patients and clinicians have better data on which to make decisions to enhance care quality and safety.

摘要

目的

本研究通过使用真实数据集,评估了人口统计学数据标准化建议对提高患者匹配准确性的程度。

材料与方法

我们使用了 4 个经过人工审核的数据集,其中包含随机选择的匹配和不匹配记录。匹配数据集包括健康信息交换(HIE)记录、公共卫生注册记录、社会保障死亡主文件记录和新生儿筛查记录。标准化字段包括姓氏、电话号码、社会安全号码、出生日期和地址。使用 4 个指标评估匹配性能:敏感性、特异性、阳性预测值和准确性。

结果

标准化地址独立地与公共卫生和 HIE 数据集的匹配敏感性提高有关,约为 0.6%和 4.5%。由于匹配特异性降低,两个数据集的总体准确性保持不变。我们在死亡主文件数据集中没有观察到地址标准化的类似影响。姓氏标准化使 HIE 数据集的匹配敏感性提高了 0.6%,而由于匹配特异性降低,总体准确性保持不变。我们注意到其他数据集没有类似的影响。标准化其他单个字段(电话、出生日期或社会安全号码)没有显示出匹配改进。由于标准化地址和姓氏提高了匹配敏感性,我们检查了地址和姓氏标准化的综合效果,结果表明标准化使 HIE 数据集的敏感性从 81.3%提高到 91.6%。

结论

数据标准化可以提高匹配率,从而确保患者和临床医生能够更好地利用数据做出决策,以提高护理质量和安全性。

相似文献

1
Evaluating the effect of data standardization and validation on patient matching accuracy.
J Am Med Inform Assoc. 2019 May 1;26(5):447-456. doi: 10.1093/jamia/ocy191.
3
Measuring the Degree of Unmatched Patient Records in a Health Information Exchange Using Exact Matching.
Appl Clin Inform. 2016 May 11;7(2):330-40. doi: 10.4338/ACI-2015-11-RA-0158. eCollection 2016.
4
Evolving availability and standardization of patient attributes for matching.
Health Aff Sch. 2023 Oct 12;1(4):qxad047. doi: 10.1093/haschl/qxad047. eCollection 2023 Oct.
6
Evaluation of real-world referential and probabilistic patient matching to advance patient identification strategy.
J Am Med Inform Assoc. 2022 Jul 12;29(8):1409-1415. doi: 10.1093/jamia/ocac068.
7
Accuracy of Probabilistic Linkage Using the Enhanced Matching System for Public Health and Epidemiological Studies.
PLoS One. 2015 Aug 24;10(8):e0136179. doi: 10.1371/journal.pone.0136179. eCollection 2015.
8
Comparing Methods for Record Linkage for Public Health Action: Matching Algorithm Validation Study.
JMIR Public Health Surveill. 2020 Apr 30;6(2):e15917. doi: 10.2196/15917.

引用本文的文献

1
Intelligent sensing devices and systems for personalized mental health.
Med X. 2025 Dec;3(1). doi: 10.1007/s44258-025-00057-3. Epub 2025 Apr 2.
3
approaches for drug repurposing in oncology: a scoping review.
Front Pharmacol. 2024 Jun 11;15:1400029. doi: 10.3389/fphar.2024.1400029. eCollection 2024.
5
Evolving availability and standardization of patient attributes for matching.
Health Aff Sch. 2023 Oct 12;1(4):qxad047. doi: 10.1093/haschl/qxad047. eCollection 2023 Oct.
6
The Impact of Name Transformation on Match Rates Within a Large Consumer Database.
AMIA Annu Symp Proc. 2023 Apr 29;2022:692-699. eCollection 2022.
8
A framework for a consistent and reproducible evaluation of manual review for patient matching algorithms.
J Am Med Inform Assoc. 2022 Nov 14;29(12):2105-2109. doi: 10.1093/jamia/ocac175.
9
Development of a North American coordinated registry network for surgical treatment of benign prostatic hyperplasia.
World J Urol. 2022 Dec;40(12):2991-2999. doi: 10.1007/s00345-022-04164-3. Epub 2022 Oct 11.
10
Patient-Centered Data Home: A Path Towards National Interoperability.
Front Digit Health. 2022 Jul 13;4:887015. doi: 10.3389/fdgth.2022.887015. eCollection 2022.

本文引用的文献

1
Defining an Optimal Cut-Point Value in ROC Analysis: An Alternative Approach.
Comput Math Methods Med. 2017;2017:3762651. doi: 10.1155/2017/3762651. Epub 2017 May 31.
2
Using health information technology to manage a patient population in accountable care organizations.
J Health Organ Manag. 2016 Jun 20;30(4):581-96. doi: 10.1108/JHOM-01-2015-0003.
3
Early Performance of Accountable Care Organizations in Medicare.
N Engl J Med. 2016 Jun 16;374(24):2357-66. doi: 10.1056/NEJMsa1600142. Epub 2016 Apr 13.
5
Evaluating latent class models with conditional dependence in record linkage.
Stat Med. 2014 Oct 30;33(24):4250-65. doi: 10.1002/sim.6230. Epub 2014 Jun 17.
6
Optimal two-phase sampling design for comparing accuracies of two binary classification rules.
Stat Med. 2014 Feb 10;33(3):500-13. doi: 10.1002/sim.5946. Epub 2013 Sep 4.
7
A practical approach for incorporating dependence among fields in probabilistic record linkage.
BMC Med Inform Decis Mak. 2013 Aug 30;13:97. doi: 10.1186/1472-6947-13-97.
8
The emergence of a learning healthcare system.
Clin Nurse Spec. 2013 Jan-Feb;27(1):7-9. doi: 10.1097/NUR.0b013e3182776dcb.
10
Factors accounting for a missed diagnosis of cystic fibrosis after newborn screening.
Pediatr Pulmonol. 2011 Dec;46(12):1166-74. doi: 10.1002/ppul.21509. Epub 2011 Aug 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验