Suppr超能文献

癌症流行病学描述性队列数据库:一种支持基于人群的跨学科研究的工具。

The Cancer Epidemiology Descriptive Cohort Database: A Tool to Support Population-Based Interdisciplinary Research.

作者信息

Kennedy Amy E, Khoury Muin J, Ioannidis John P A, Brotzman Michelle, Miller Amy, Lane Crystal, Lai Gabriel Y, Rogers Scott D, Harvey Chinonye, Elena Joanne W, Seminara Daniela

机构信息

Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, NCI, NIH, Rockville, Maryland.

Office of Public Health Genomics, Centers for Disease Control and Prevention, Atlanta, Georgia.

出版信息

Cancer Epidemiol Biomarkers Prev. 2016 Oct;25(10):1392-1401. doi: 10.1158/1055-9965.EPI-16-0412. Epub 2016 Jul 20.

Abstract

BACKGROUND

We report on the establishment of a web-based Cancer Epidemiology Descriptive Cohort Database (CEDCD). The CEDCD's goals are to enhance awareness of resources, facilitate interdisciplinary research collaborations, and support existing cohorts for the study of cancer-related outcomes.

METHODS

Comprehensive descriptive data were collected from large cohorts established to study cancer as primary outcome using a newly developed questionnaire. These included an inventory of baseline and follow-up data, biospecimens, genomics, policies, and protocols. Additional descriptive data extracted from publicly available sources were also collected. This information was entered in a searchable and publicly accessible database. We summarized the descriptive data across cohorts and reported the characteristics of this resource.

RESULTS

As of December 2015, the CEDCD includes data from 46 cohorts representing more than 6.5 million individuals (29% ethnic/racial minorities). Overall, 78% of the cohorts have collected blood at least once, 57% at multiple time points, and 46% collected tissue samples. Genotyping has been performed by 67% of the cohorts, while 46% have performed whole-genome or exome sequencing in subsets of enrolled individuals. Information on medical conditions other than cancer has been collected in more than 50% of the cohorts. More than 600,000 incident cancer cases and more than 40,000 prevalent cases are reported, with 24 cancer sites represented.

CONCLUSIONS

The CEDCD assembles detailed descriptive information on a large number of cancer cohorts in a searchable database.

IMPACT

Information from the CEDCD may assist the interdisciplinary research community by facilitating identification of well-established population resources and large-scale collaborative and integrative research. Cancer Epidemiol Biomarkers Prev; 25(10); 1392-401. ©2016 AACR.

摘要

背景

我们报告了基于网络的癌症流行病学描述性队列数据库(CEDCD)的建立情况。CEDCD的目标是提高对资源的认识,促进跨学科研究合作,并支持现有队列开展癌症相关结局研究。

方法

使用新开发的问卷,从为研究癌症作为主要结局而建立的大型队列中收集全面的描述性数据。这些数据包括基线和随访数据、生物标本、基因组学、政策和方案的清单。还收集了从公开可用来源提取的其他描述性数据。这些信息被录入一个可搜索且公开访问的数据库。我们总结了各队列的描述性数据,并报告了该资源的特征。

结果

截至2015年12月,CEDCD包含来自46个队列的数据,代表超过650万人(29%为少数族裔/种族)。总体而言,78%的队列至少采集过一次血液样本,57%在多个时间点采集过,46%采集过组织样本。67%的队列进行过基因分型,而46%在部分入组个体中进行过全基因组或外显子组测序。超过50%的队列收集了除癌症以外的疾病信息。报告了超过60万例新发癌症病例和超过4万例现患病例,涉及24个癌症部位。

结论

CEDCD在一个可搜索的数据库中汇集了大量癌症队列的详细描述性信息。

影响

CEDCD提供的信息可能有助于跨学科研究群体识别成熟的人群资源以及开展大规模合作与整合研究。《癌症流行病学、生物标志物与预防》;25(10);1392 - 401。©2016美国癌症研究协会。

相似文献

本文引用的文献

4
Precision Public Health for the Era of Precision Medicine.精准医学时代的精准公共卫生。
Am J Prev Med. 2016 Mar;50(3):398-401. doi: 10.1016/j.amepre.2015.08.031. Epub 2015 Nov 4.
9
Making prospective registration of observational research a reality.实现观察性研究的前瞻性注册。
Sci Transl Med. 2014 Feb 19;6(224):224cm1. doi: 10.1126/scitranslmed.3007513.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验