Ardalan Maryam, Wegener Gregers, Polsinelli Benedetta, Madsen Torsten M, Nyengaard Jens R
Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University Hospital, Risskov, Denmark.
Department of Clinical Medicine, Stereology and Electron Microscopy Laboratory, Aarhus University Hospital, Aarhus, Denmark.
Hippocampus. 2016 Nov;26(11):1414-1423. doi: 10.1002/hipo.22617. Epub 2016 Jul 21.
Glutamatergic system and the structural plasticity hypothesis are principal components for rapid and sustained antidepressant effects of novel antidepressant therapeutics. This study represents the first investigation of the structural plasticity of the hippocampus as one of the main contributed mechanisms to the sustained anti-depressive effect of ketamine. Flinders Sensitive Line (FSL) and Flinders Resistant Line (FRL) rats were given a single intraperitoneal injection of ketamine (15 mg/kg) or saline 7 days before perfusion-fixed. The optical fractionator method was used to estimate the total number of neurons in the granular cell layer. Microvessel length in the molecular layer of DG was evaluated with global spatial sampling method. By use of the physical disector method, the number of synapses was estimated. The volume of the hippocampus was larger in the FRL-vehicle rats compared with FSL-vehicle group and in FSL-ketamine versus FSL-vehicle rats (P < 0.05). The number of non-perforated synapses was significantly higher in the FSL-ketamine versus FSL-vehicle group, (P = 0.01). A significant effect of ketamine on enhancement of the number of neurons in DG in FSL rats was observed (P = 0.01). The total length of the microvessels 1 week after ketamine treatment in the FSL rats significantly increased (P < 0.05). Our results indicate that neurovascular changes of hippocampus could be one of the possible mechanisms underlying the sustained antidepressant effect of ketamine by reversing alteration of the number of the excitatory synapses, neuronal number and length of the microvessels in the hippocampus. © 2016 Wiley Periodicals, Inc.
谷氨酸能系统和结构可塑性假说是新型抗抑郁疗法产生快速和持续抗抑郁作用的主要组成部分。本研究首次对海马体的结构可塑性进行了调查,这是氯胺酮持续抗抑郁作用的主要促成机制之一。在灌注固定前7天,给弗林德斯敏感系(FSL)和弗林德斯抗性系(FRL)大鼠腹腔注射一次氯胺酮(15mg/kg)或生理盐水。采用光学分割法估计颗粒细胞层中神经元的总数。用整体空间采样法评估齿状回分子层微血管长度。采用物理分割法估计突触数量。与FSL-生理盐水组相比,FRL-生理盐水组大鼠海马体体积更大,FSL-氯胺酮组大鼠与FSL-生理盐水组大鼠相比海马体体积也更大(P<0.05)。与FSL-生理盐水组相比,FSL-氯胺酮组大鼠非穿孔突触数量显著增加(P=0.01)。观察到氯胺酮对FSL大鼠齿状回神经元数量增加有显著影响(P=0.01)。FSL大鼠氯胺酮治疗1周后微血管总长度显著增加(P<0.05)。我们的研究结果表明,海马体的神经血管变化可能是氯胺酮持续抗抑郁作用的潜在机制之一,其通过逆转海马体中兴奋性突触数量、神经元数量和微血管长度的改变来实现。©2016威利期刊公司。