Suppr超能文献

高羊茅(Festuca arundinacea)根茎发育的激素调控与控制呼吸和氨基酸代谢的蛋白质组学变化相关。

Hormone regulation of rhizome development in tall fescue (Festuca arundinacea) associated with proteomic changes controlling respiratory and amino acid metabolism.

作者信息

Ma Xiqing, Xu Qian, Meyer William A, Huang Bingru

机构信息

College of Agro-grassland Science Nanjing Agricultural University, Nanjing 210095, PR China Department of Plant Biology and Pathology, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA.

National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, PR China.

出版信息

Ann Bot. 2016 Sep;118(3):481-94. doi: 10.1093/aob/mcw120. Epub 2016 Jul 21.

Abstract

BACKGROUND AND AIMS

Rhizomes are underground stems with meristematic tissues capable of generating shoots and roots. However, mechanisms controlling rhizome formation and growth are yet to be completely understood. The objectives of this study were to investigate whether rhizome development could be regulated by cytokinins (CKs) and gibberellic acids (GAs), and determine underlying mechanisms of regulation of rhizome formation and growth of tall fescue (Festuca arundinacea) by a CK or GA through proteomic and transcript analysis.

METHODS

A rhizomatous genotype of tall fescue ('BR') plants were treated with 6-benzylaminopurine (BAP, a synthetic cytokinin) or GA3 in hydroponic culture in growth chambers. Furthermore, comparative proteomic analysis of two-dimensional electrophoresis and mass spectrometry were performed to investigate proteins and associated metabolic pathways imparting increased rhizome number by BAP and rhizome elongation by GA3 KEY RESULTS: BAP stimulated rhizome formation while GA3 promoted rhizome elongation. Proteomic analysis identified 76 differentially expressed proteins (DEPs) due to BAP treatment and 37 DEPs due to GA3 treatment. Cytokinin-related genes and cell division-related genes were upregulated in the rhizome node by BAP and gibberellin-related and cell growth-related genes in the rhizome by GA3 CONCLUSIONS: Most of the BAP- or GA-responsive DEPs were involved in respiratory metabolism and amino acid metabolism. Transcription analysis demonstrated that genes involved in hormone metabolism, signalling pathways, cell division and cell-wall loosening were upregulated by BAP or GA3 The CK and GA promoted rhizome formation and growth, respectively, by activating metabolic pathways that supply energy and amino acids to support cell division and expansion during rhizome initiation and elongation in tall fescue.

摘要

背景与目的

根状茎是具有分生组织的地下茎,能够产生芽和根。然而,控制根状茎形成和生长的机制尚未完全清楚。本研究的目的是调查细胞分裂素(CKs)和赤霉素(GAs)是否能调节根状茎的发育,并通过蛋白质组学和转录分析确定CK或GA调控高羊茅(Festuca arundinacea)根状茎形成和生长的潜在机制。

方法

在生长室的水培条件下,用6-苄基腺嘌呤(BAP,一种合成细胞分裂素)或GA3处理高羊茅(‘BR’)的根状茎基因型植株。此外,通过二维电泳和质谱进行比较蛋白质组学分析,以研究赋予BAP增加根状茎数量和GA3促进根状茎伸长的蛋白质及相关代谢途径。关键结果:BAP刺激根状茎形成,而GA3促进根状茎伸长。蛋白质组学分析鉴定出因BAP处理有76个差异表达蛋白(DEPs),因GA3处理有37个DEPs。BAP使根状茎节中的细胞分裂素相关基因和细胞分裂相关基因上调,GA3使根状茎中的赤霉素相关基因和细胞生长相关基因上调。结论:大多数对BAP或GA有响应的DEPs参与呼吸代谢和氨基酸代谢。转录分析表明,参与激素代谢、信号通路、细胞分裂和细胞壁松弛的基因被BAP或GA3上调。CK和GA分别通过激活代谢途径促进根状茎的形成和生长,这些代谢途径提供能量和氨基酸以支持高羊茅根状茎起始和伸长过程中的细胞分裂和扩展。

相似文献

2
Gibberellin-Stimulation of Rhizome Elongation and Differential GA-Responsive Proteomic Changes in Two Grass Species.
Front Plant Sci. 2016 Jun 23;7:905. doi: 10.3389/fpls.2016.00905. eCollection 2016.
7
Strigolactones and interaction with auxin regulating root elongation in tall fescue under different temperature regimes.
Plant Sci. 2018 Jun;271:34-39. doi: 10.1016/j.plantsci.2018.03.008. Epub 2018 Mar 13.

引用本文的文献

1
Plant Hormone Modularity and the Survival-Reproduction Trade-Off.
Biology (Basel). 2023 Aug 17;12(8):1143. doi: 10.3390/biology12081143.
2
Cytokinin and Metabolites Affect Rhizome Growth and Development in Kentucky Bluegrass ().
Biology (Basel). 2023 Aug 11;12(8):1120. doi: 10.3390/biology12081120.
3
Carbon and nitrogen metabolism affects kentucky bluegrass rhizome expansion.
BMC Plant Biol. 2023 Apr 26;23(1):221. doi: 10.1186/s12870-023-04230-x.
4
Identification of LsPIN1 gene and its potential functions in rhizome turning of Leymus secalinus.
BMC Genomics. 2022 Nov 16;23(1):753. doi: 10.1186/s12864-022-08979-7.
9
Metabolic Pathways Involved in Carbon Dioxide Enhanced Heat Tolerance in Bermudagrass.
Front Plant Sci. 2017 Sep 19;8:1506. doi: 10.3389/fpls.2017.01506. eCollection 2017.

本文引用的文献

3
Cytokinin and the cell cycle.
Curr Opin Plant Biol. 2014 Oct;21:7-15. doi: 10.1016/j.pbi.2014.05.015. Epub 2014 Jul 1.
4
CYTOKININ OXIDASE/DEHYDROGENASE4 Integrates Cytokinin and Auxin Signaling to Control Rice Crown Root Formation.
Plant Physiol. 2014 Jul;165(3):1035-1046. doi: 10.1104/pp.114.238584. Epub 2014 May 7.
6
Gibberellins and DELLAs: central nodes in growth regulatory networks.
Trends Plant Sci. 2014 Apr;19(4):231-9. doi: 10.1016/j.tplants.2013.10.001. Epub 2013 Oct 30.
7
Deep transcriptome sequencing of rhizome and aerial-shoot in Sorghum propinquum.
Plant Mol Biol. 2014 Feb;84(3):315-27. doi: 10.1007/s11103-013-0135-z. Epub 2013 Oct 9.
9
Transcriptome analysis of cytokinin response in tomato leaves.
PLoS One. 2013;8(1):e55090. doi: 10.1371/journal.pone.0055090. Epub 2013 Jan 25.
10
Transcriptome profiling of cytokinin and auxin regulation in tomato root.
J Exp Bot. 2013 Jan;64(2):695-704. doi: 10.1093/jxb/ers365.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验