Suppr超能文献

构象微调通过间接突变效应驱动混杂活性的进化。

Conformational Tinkering Drives Evolution of a Promiscuous Activity through Indirect Mutational Effects.

作者信息

Yang Gloria, Hong Nansook, Baier Florian, Jackson Colin J, Tokuriki Nobuhiko

机构信息

Michael Smith Laboratories, University of British Columbia , Vancouver, BC V6T 1Z4, Canada.

Research School of Chemistry, Australian National University , Canberra, ACT 0200, Australia.

出版信息

Biochemistry. 2016 Aug 16;55(32):4583-93. doi: 10.1021/acs.biochem.6b00561. Epub 2016 Aug 2.

Abstract

How remote mutations can lead to changes in enzyme function at a molecular level is a central question in evolutionary biochemistry and biophysics. Here, we combine laboratory evolution with biochemical, structural, genetic, and computational analysis to dissect the molecular basis for the functional optimization of phosphotriesterase activity in a bacterial lactonase (AiiA) from the metallo-β-lactamase (MBL) superfamily. We show that a 1000-fold increase in phosphotriesterase activity is caused by a more favorable catalytic binding position of the paraoxon substrate in the evolved enzyme that resulted from conformational tinkering of the active site through peripheral mutations. A nonmutated active site residue, Phe68, was displaced by ∼3 Å through the indirect effects of two second-shell trajectory mutations, allowing molecular interactions between the residue and paraoxon. Comparative mutational scanning, i.e., examining the effects of alanine mutagenesis on different genetic backgrounds, revealed significant changes in the functional roles of Phe68 and other nonmutated active site residues caused by the indirect effects of trajectory mutations. Our work provides a quantitative measurement of the impact of second-shell mutations on the catalytic contributions of nonmutated residues and unveils the underlying intramolecular network of strong epistatic mutational relationships between active site residues and more remote residues. Defining these long-range conformational and functional epistatic relationships has allowed us to better understand the subtle, but cumulatively significant, role of second- and third-shell mutations in evolution.

摘要

在分子水平上,远距离突变如何导致酶功能的改变是进化生物化学和生物物理学中的核心问题。在此,我们将实验室进化与生化、结构、遗传和计算分析相结合,剖析金属β-内酰胺酶(MBL)超家族中一种细菌内酯酶(AiiA)磷酸三酯酶活性功能优化的分子基础。我们发现,磷酸三酯酶活性增加1000倍是由于进化后的酶中对氧磷底物具有更有利的催化结合位置,这是通过活性位点的构象微调以及周边突变导致的。一个未突变的活性位点残基苯丙氨酸68(Phe68),由于两个第二壳层轨迹突变的间接影响,发生了约3 Å的位移,使得该残基与对氧磷之间产生了分子相互作用。比较突变扫描,即研究丙氨酸诱变在不同遗传背景下的影响,揭示了由轨迹突变的间接影响导致的Phe68和其他未突变活性位点残基功能作用的显著变化。我们的工作对第二壳层突变对未突变残基催化贡献的影响进行了定量测量,并揭示了活性位点残基与更远距离残基之间潜在的强上位性突变关系的分子内网络。定义这些远程构象和功能上位性的关系,使我们能够更好地理解第二和第三壳层突变在进化中所起的微妙但累积起来却很显著的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验