Fuentes-Ugarte Nicolás, Pereira-Silva Martin, Cortes-Rubilar Isaac, Vallejos-Baccelliere Gabriel, Guixé Victoria, Castro-Fernandez Victor
Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
Biophys Rev. 2025 Apr 11;17(2):467-478. doi: 10.1007/s12551-025-01314-w. eCollection 2025 Apr.
Understanding the emergence or loss of enzyme functions comprises several approaches, such as genetic, structural, and kinetic studies. Promiscuous enzyme activities have been proposed as starting points for the emergence of novel enzyme functions, for example, through genetic models such as neofunctionalization and subfunctionalization. In both cases, neutral evolution would fix gene redundancy, critical in relaxing functional constraints and allowing specific mutations to drive innovation. The evolution of enzyme activities has a structural basis, with genetic mutations modifying the active site architecture, conformational dynamics, or interaction networks, which leads to the creation, enhancement, or restriction of enzyme functions where epistatic interactions are crucial. These structural changes impact the described kinetic mechanisms like ground-state stabilization (affinity), transition-state stabilization (catalysis), or a combination of both. Case studies across diverse enzyme families illustrate these principles, emphasizing the interplay between genetic, structural, and kinetic approaches. Finally, we discuss the importance of understanding evolutionary mechanisms and their impact on protein engineering and drug design for biomedical and industrial applications. However, these studies highlight that further experimental evolutionary data collection is necessary to enable the training of advanced machine learning models for use in biotechnological applications.
理解酶功能的出现或丧失包括多种方法,如遗传学、结构和动力学研究。混杂酶活性已被认为是新酶功能出现的起点,例如,通过新功能化和亚功能化等遗传模型。在这两种情况下,中性进化会固定基因冗余,这对于放松功能限制并允许特定突变推动创新至关重要。酶活性的进化具有结构基础,基因突变会改变活性位点结构、构象动力学或相互作用网络,这会导致酶功能的产生、增强或限制,其中上位相互作用至关重要。这些结构变化会影响所描述的动力学机制,如基态稳定(亲和力)、过渡态稳定(催化)或两者的结合。跨不同酶家族的案例研究说明了这些原理,强调了遗传学、结构和动力学方法之间的相互作用。最后,我们讨论了理解进化机制及其对生物医学和工业应用中的蛋白质工程和药物设计的影响的重要性。然而,这些研究强调,需要进一步收集实验进化数据,以便能够训练用于生物技术应用的先进机器学习模型。