Suppr超能文献

斑马鱼中甘氨酸能突触的缺陷

Defects of the Glycinergic Synapse in Zebrafish.

作者信息

Ogino Kazutoyo, Hirata Hiromi

机构信息

Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University Sagamihara, Japan.

出版信息

Front Mol Neurosci. 2016 Jun 29;9:50. doi: 10.3389/fnmol.2016.00050. eCollection 2016.

Abstract

Glycine mediates fast inhibitory synaptic transmission. Physiological importance of the glycinergic synapse is well established in the brainstem and the spinal cord. In humans, the loss of glycinergic function in the spinal cord and brainstem leads to hyperekplexia, which is characterized by an excess startle reflex to sudden acoustic or tactile stimulation. In addition, glycinergic synapses in this region are also involved in the regulation of respiration and locomotion, and in the nociceptive processing. The importance of the glycinergic synapse is conserved across vertebrate species. A teleost fish, the zebrafish, offers several advantages as a vertebrate model for research of glycinergic synapse. Mutagenesis screens in zebrafish have isolated two motor defective mutants that have pathogenic mutations in glycinergic synaptic transmission: bandoneon (beo) and shocked (sho). Beo mutants have a loss-of-function mutation of glycine receptor (GlyR) β-subunit b, alternatively, sho mutant is a glycinergic transporter 1 (GlyT1) defective mutant. These mutants are useful animal models for understanding of glycinergic synaptic transmission and for identification of novel therapeutic agents for human diseases arising from defect in glycinergic transmission, such as hyperekplexia or glycine encephalopathy. Recent advances in techniques for genome editing and for imaging and manipulating of a molecule or a physiological process make zebrafish more attractive model. In this review, we describe the glycinergic defective zebrafish mutants and the technical advances in both forward and reverse genetic approaches as well as in vivo visualization and manipulation approaches for the study of the glycinergic synapse in zebrafish.

摘要

甘氨酸介导快速抑制性突触传递。甘氨酸能突触在脑干和脊髓中的生理重要性已得到充分证实。在人类中,脊髓和脑干中甘氨酸能功能的丧失会导致惊吓症,其特征是对突然的听觉或触觉刺激产生过度的惊吓反射。此外,该区域的甘氨酸能突触还参与呼吸和运动的调节以及伤害性处理。甘氨酸能突触的重要性在脊椎动物物种中是保守的。硬骨鱼斑马鱼作为研究甘氨酸能突触的脊椎动物模型具有几个优势。斑马鱼的诱变筛选分离出了两个运动缺陷突变体,它们在甘氨酸能突触传递中存在致病突变:手风琴(beo)和休克(sho)。Beo突变体具有甘氨酸受体(GlyR)β亚基b的功能丧失突变,而sho突变体是甘氨酸能转运体1(GlyT1)缺陷突变体。这些突变体是有用的动物模型,可用于理解甘氨酸能突触传递,并用于鉴定针对因甘氨酸能传递缺陷引起的人类疾病(如惊吓症或甘氨酸脑病)的新型治疗药物。基因组编辑以及分子或生理过程成像与操纵技术的最新进展使斑马鱼成为更具吸引力的模型。在这篇综述中,我们描述了甘氨酸能缺陷的斑马鱼突变体以及正向和反向遗传方法以及体内可视化和操纵方法在斑马鱼甘氨酸能突触研究中的技术进展。

相似文献

1
Defects of the Glycinergic Synapse in Zebrafish.
Front Mol Neurosci. 2016 Jun 29;9:50. doi: 10.3389/fnmol.2016.00050. eCollection 2016.
2
Defective glycinergic synaptic transmission in zebrafish motility mutants.
Front Mol Neurosci. 2010 Jan 8;2:26. doi: 10.3389/neuro.02.026.2009. eCollection 2009.
3
Zebrafish bandoneon mutants display behavioral defects due to a mutation in the glycine receptor beta-subunit.
Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8345-50. doi: 10.1073/pnas.0500862102. Epub 2005 May 31.
4
The biological role of the glycinergic synapse in early zebrafish motility.
Neurosci Res. 2011 Sep;71(1):1-11. doi: 10.1016/j.neures.2011.06.003. Epub 2011 Jun 17.
5
Distinct phenotypes in zebrafish models of human startle disease.
Neurobiol Dis. 2013 Dec;60:139-51. doi: 10.1016/j.nbd.2013.09.002. Epub 2013 Sep 9.
6
Glycinergic synapse development, plasticity, and homeostasis in zebrafish.
Front Mol Neurosci. 2009 Dec 23;2:30. doi: 10.3389/neuro.02.030.2009. eCollection 2009.
7
Phosphorylation of Gephyrin in Zebrafish Mauthner Cells Governs Glycine Receptor Clustering and Behavioral Desensitization to Sound.
J Neurosci. 2019 Nov 6;39(45):8988-8997. doi: 10.1523/JNEUROSCI.1315-19.2019. Epub 2019 Sep 26.
8
Glycinergic transmission: glycine transporter GlyT2 in neuronal pathologies.
Neuronal Signal. 2016 Dec 22;1(1):NS20160009. doi: 10.1042/NS20160009. eCollection 2017 Feb.
9
A Missense Mutation A384P Associated with Human Hyperekplexia Reveals a Desensitization Site of Glycine Receptors.
J Neurosci. 2018 Mar 14;38(11):2818-2831. doi: 10.1523/JNEUROSCI.0674-16.2018. Epub 2018 Feb 13.
10
Investigating the Mechanism by Which Gain-of-function Mutations to the α1 Glycine Receptor Cause Hyperekplexia.
J Biol Chem. 2016 Jul 15;291(29):15332-41. doi: 10.1074/jbc.M116.728592. Epub 2016 May 18.

引用本文的文献

1
The presynaptic glycine transporter GlyT2 is regulated by the Hedgehog pathway in vitro and in vivo.
Commun Biol. 2021 Oct 18;4(1):1197. doi: 10.1038/s42003-021-02718-6.
2
A Great Catch for Investigating Inborn Errors of Metabolism-Insights Obtained from Zebrafish.
Biomolecules. 2020 Sep 22;10(9):1352. doi: 10.3390/biom10091352.
3
Expansion microscopy of zebrafish for neuroscience and developmental biology studies.
Proc Natl Acad Sci U S A. 2017 Dec 12;114(50):E10799-E10808. doi: 10.1073/pnas.1706281114. Epub 2017 Nov 21.

本文引用的文献

1
Identification and characterization of heptapeptide modulators of the glycine receptor.
Eur J Pharmacol. 2016 Jun 5;780:252-9. doi: 10.1016/j.ejphar.2016.03.058. Epub 2016 Mar 31.
2
Identification of Parvalbumin Interneurons as Cellular Substrate of Fear Memory Persistence.
Cereb Cortex. 2016 May;26(5):2325-2340. doi: 10.1093/cercor/bhw001. Epub 2016 Feb 22.
3
Cerebral Cortical Circuitry Formation Requires Functional Glycine Receptors.
Cereb Cortex. 2017 Mar 1;27(3):1863-1877. doi: 10.1093/cercor/bhw025.
4
KCC2 knockdown impairs glycinergic synapse maturation in cultured spinal cord neurons.
Histochem Cell Biol. 2016 Jun;145(6):637-46. doi: 10.1007/s00418-015-1397-0. Epub 2016 Jan 16.
5
Selective potentiation of alpha 1 glycine receptors by ginkgolic acid.
Front Mol Neurosci. 2015 Oct 29;8:64. doi: 10.3389/fnmol.2015.00064. eCollection 2015.
6
Nonsynaptic glycine release is involved in the early KCC2 expression.
Dev Neurobiol. 2016 Jul;76(7):764-79. doi: 10.1002/dneu.22358. Epub 2015 Nov 3.
7
Genetic and functional analyses demonstrate a role for abnormal glycinergic signaling in autism.
Mol Psychiatry. 2016 Jul;21(7):936-45. doi: 10.1038/mp.2015.139. Epub 2015 Sep 15.
8
Glycine transporter 1 is a target for the treatment of epilepsy.
Neuropharmacology. 2015 Dec;99:554-65. doi: 10.1016/j.neuropharm.2015.08.031. Epub 2015 Aug 21.
9
Genetic compensation induced by deleterious mutations but not gene knockdowns.
Nature. 2015 Aug 13;524(7564):230-3. doi: 10.1038/nature14580. Epub 2015 Jul 13.
10
pigk Mutation underlies macho behavior and affects Rohon-Beard cell excitability.
J Neurophysiol. 2015 Aug;114(2):1146-57. doi: 10.1152/jn.00355.2015. Epub 2015 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验