Lhomond Olivia, Teasdale Normand, Simoneau Martin, Mouchnino Laurence
Laboratoire de Neurosciences Cognitives, Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université Marseille, France.
Département de Kinésiologie, Faculté de Médecine, Université LavalQuébec, QC, Canada; Centre de Recherche du Centre Hospitalier, Universitaire de QuébecQuébec, QC, Canada.
Front Hum Neurosci. 2016 Jun 29;10:318. doi: 10.3389/fnhum.2016.00318. eCollection 2016.
Previous studies on the control of human balance suggested that increased pressure under the feet, leading to reduced plantar sole mechanoreceptors sensitivity, increases body sway. Although this suggestion is attracting, it is unclear whether increased plantar sole pressure simply reduces the transmission of plantar sole afferent to the cortex or also alters the sensorimotor integrative mechanisms. Here we used electrical stimulation applied under the sole of the foot to probe the sensorimotor mechanisms processing foot mechanoreceptors. Balance control of healthy individuals was assessed either when wearing a loaded vest or in normal-weight condition. In the Loaded condition, we observed decreased cortical activity over the primary somatosensory cortex (SI) for both an early P50-N90 somatosensory evoked potential (SEP) and for oscillatory brain activity within the gamma band (30-80 Hz). These reductions were interpreted as a disrupted early sensory transmission (i.e., decreased early SEP) leading to a decreased perception of plantar sole sensory information (i.e., decreased gamma band power). These early sensory mechanisms for the Loaded condition were associated with an increase in the late P170-N210 SEP and oscillatory brain activity within the beta band (19-24 Hz). These neural signatures involved areas which are engaged in sensorimotor integrative processes (secondary somatosensory cortex (SII) and right temporoparietal junction). Altered early and late sensory processes may result from the increase pressure on the mechanoreceptors of the foot sole and not from postural instability per se. Indeed, postural instability with normal weight condition did not lead to SEP changes.
先前关于人体平衡控制的研究表明,足底压力增加会导致足底机械感受器敏感性降低,进而增加身体摇摆。尽管这一观点很有吸引力,但尚不清楚足底压力增加仅仅是减少了足底传入信号向皮层的传递,还是也改变了感觉运动整合机制。在这里,我们通过在脚底施加电刺激来探究处理足部机械感受器的感觉运动机制。在健康个体穿着负重背心或处于正常体重状态时评估其平衡控制能力。在负重状态下,我们观察到,对于早期P50-N90体感诱发电位(SEP)和γ频段(30-80Hz)内的振荡脑活动,初级体感皮层(SI)的皮层活动均有所下降。这些下降被解释为早期感觉传递中断(即早期SEP降低),导致对足底感觉信息的感知减少(即γ频段功率降低)。负重状态下的这些早期感觉机制与晚期P170-N210SEP增加以及β频段(19-24Hz)内的振荡脑活动有关。这些神经特征涉及参与感觉运动整合过程的区域(次级体感皮层(SII)和右侧颞顶交界区)。早期和晚期感觉过程的改变可能是由于足底机械感受器上的压力增加所致,而非姿势不稳定本身。事实上,正常体重状态下的姿势不稳定并未导致SEP变化。