Suppr超能文献

迈向统一的认知亚符号计算理论。

Toward a Unified Sub-symbolic Computational Theory of Cognition.

作者信息

Butz Martin V

机构信息

Cognitive Modeling, Department of Computer Science and Department of Psychology, Eberhard Karls University of Tübingen Tübingen, Germany.

出版信息

Front Psychol. 2016 Jun 21;7:925. doi: 10.3389/fpsyg.2016.00925. eCollection 2016.

Abstract

This paper proposes how various disciplinary theories of cognition may be combined into a unifying, sub-symbolic, computational theory of cognition. The following theories are considered for integration: psychological theories, including the theory of event coding, event segmentation theory, the theory of anticipatory behavioral control, and concept development; artificial intelligence and machine learning theories, including reinforcement learning and generative artificial neural networks; and theories from theoretical and computational neuroscience, including predictive coding and free energy-based inference. In the light of such a potential unification, it is discussed how abstract cognitive, conceptualized knowledge and understanding may be learned from actively gathered sensorimotor experiences. The unification rests on the free energy-based inference principle, which essentially implies that the brain builds a predictive, generative model of its environment. Neural activity-oriented inference causes the continuous adaptation of the currently active predictive encodings. Neural structure-oriented inference causes the longer term adaptation of the developing generative model as a whole. Finally, active inference strives for maintaining internal homeostasis, causing goal-directed motor behavior. To learn abstract, hierarchical encodings, however, it is proposed that free energy-based inference needs to be enhanced with structural priors, which bias cognitive development toward the formation of particular, behaviorally suitable encoding structures. As a result, it is hypothesized how abstract concepts can develop from, and thus how they are structured by and grounded in, sensorimotor experiences. Moreover, it is sketched-out how symbol-like thought can be generated by a temporarily active set of predictive encodings, which constitute a distributed neural attractor in the form of an interactive free-energy minimum. The activated, interactive network attractor essentially characterizes the semantics of a concept or a concept composition, such as an actual or imagined situation in our environment. Temporal successions of attractors then encode unfolding semantics, which may be generated by a behavioral or mental interaction with an actual or imagined situation in our environment. Implications, further predictions, possible verification, and falsifications, as well as potential enhancements into a fully spelled-out unified theory of cognition are discussed at the end of the paper.

摘要

本文提出了如何将各种认知学科理论整合为一个统一的、亚符号的认知计算理论。考虑进行整合的理论如下:心理学理论,包括事件编码理论、事件分割理论、预期行为控制理论和概念发展理论;人工智能和机器学习理论,包括强化学习和生成式人工神经网络;以及理论和计算神经科学的理论,包括预测编码和基于自由能的推理。鉴于这种潜在的统一,本文讨论了如何从积极收集的感觉运动经验中学习抽象的认知、概念化的知识和理解。这种统一基于基于自由能的推理原则,该原则本质上意味着大脑构建其环境的预测性、生成性模型。面向神经活动的推理导致当前活跃的预测编码不断适应。面向神经结构的推理导致整个发展中的生成模型进行长期适应。最后,主动推理力求维持内部稳态,从而导致目标导向的运动行为。然而,为了学习抽象的、分层的编码,有人提出基于自由能的推理需要用结构先验进行增强,这会使认知发展偏向于形成特定的、行为上合适的编码结构。结果,本文假设了抽象概念如何从感觉运动经验中发展而来,以及它们如何由感觉运动经验构建并基于感觉运动经验。此外,本文还概述了类似符号的思维如何由一组暂时活跃的预测编码产生,这些预测编码构成了一个以交互式自由能最小值形式存在的分布式神经吸引子。被激活的交互式网络吸引子本质上表征了一个概念或概念组合的语义,例如我们环境中的实际或想象情境。吸引子的时间序列然后编码展开的语义,这可能由与我们环境中的实际或想象情境的行为或心理交互产生。本文结尾讨论了相关含义、进一步的预测、可能的验证与证伪,以及将其增强为一个完整阐述的统一认知理论的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d15c/4915327/9f14e985b896/fpsyg-07-00925-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验