Suppr超能文献

NeuroLISP:基于吸引子神经网络的高级符号编程。

NeuroLISP: High-level symbolic programming with attractor neural networks.

机构信息

Department of Computer Science, University of Maryland, College Park, MD, USA.

Department of Elec. Engr. and Comp. Sci., Syracuse University, Syracuse, NY, USA.

出版信息

Neural Netw. 2022 Feb;146:200-219. doi: 10.1016/j.neunet.2021.11.009. Epub 2021 Nov 18.

Abstract

Despite significant improvements in contemporary machine learning, symbolic methods currently outperform artificial neural networks on tasks that involve compositional reasoning, such as goal-directed planning and logical inference. This illustrates a computational explanatory gap between cognitive and neurocomputational algorithms that obscures the neurobiological mechanisms underlying cognition and impedes progress toward human-level artificial intelligence. Because of the strong relationship between cognition and working memory control, we suggest that the cognitive abilities of contemporary neural networks are limited by biologically-implausible working memory systems that rely on persistent activity maintenance and/or temporal nonlocality. Here we present NeuroLISP, an attractor neural network that can represent and execute programs written in the LISP programming language. Unlike previous approaches to high-level programming with neural networks, NeuroLISP features a temporally-local working memory based on itinerant attractor dynamics, top-down gating, and fast associative learning, and implements several high-level programming constructs such as compositional data structures, scoped variable binding, and the ability to manipulate and execute programmatic expressions in working memory (i.e., programs can be treated as data). Our computational experiments demonstrate the correctness of the NeuroLISP interpreter, and show that it can learn non-trivial programs that manipulate complex derived data structures (multiway trees), perform compositional string manipulation operations (PCFG SET task), and implement high-level symbolic AI algorithms (first-order unification). We conclude that NeuroLISP is an effective neurocognitive controller that can replace the symbolic components of hybrid models, and serves as a proof of concept for further development of high-level symbolic programming in neural networks.

摘要

尽管当代机器学习取得了重大进展,但在涉及组合推理的任务上,符号方法目前仍然优于人工神经网络,例如目标导向规划和逻辑推理。这说明了认知和神经计算算法之间存在计算解释差距,掩盖了认知的神经生物学机制,并阻碍了迈向人类水平的人工智能的进展。由于认知和工作记忆控制之间存在很强的关系,我们认为当代神经网络的认知能力受到基于持续活动维持和/或时间非局部性的生物上不可信的工作记忆系统的限制。在这里,我们提出了 NeuroLISP,这是一种吸引子神经网络,可以表示和执行用 LISP 编程语言编写的程序。与以前使用神经网络进行高级编程的方法不同,NeuroLISP 具有基于遍历吸引子动力学、自上而下门控和快速联想学习的时间局部工作记忆,并且实现了几个高级编程结构,例如组合数据结构、有作用域的变量绑定以及在工作记忆中操纵和执行程序性表达式(即,程序可以被视为数据)的能力。我们的计算实验证明了 NeuroLISP 解释器的正确性,并表明它可以学习操纵复杂派生数据结构的非平凡程序(多叉树)、执行组合字符串操作(PCFG SET 任务)以及实现高级符号 AI 算法(一阶统一)。我们得出结论,NeuroLISP 是一种有效的神经认知控制器,可以替代混合模型的符号组件,并为神经网络中高级符号编程的进一步发展提供了概念验证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验