Zhu Wenguo, Eckerskorn Niko, Upadhya Avinash, Li Li, Rode Andrei V, Lee Woei Ming
Laser Physics Centre, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601, Australia; The State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China; Equal contribution.
Laser Physics Centre, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601, Australia.
Biomed Opt Express. 2016 Jun 30;7(7):2902-11. doi: 10.1364/BOE.7.002902. eCollection 2016 Jul 1.
Efficient delivery of viruses, proteins and biological macromelecules into a micrometer-sized focal spot of an XFEL beam for coherent diffraction imaging inspired new development in touch-free particle injection methods in gaseous and vacuum environments. This paper lays out our ongoing effort in constructing an all-optical particle delivery approach that uses piconewton photophoretic and femtonewton light-pressure forces to control particle delivery into the XFEL beam. We combine a spatial light modulator (SLM) and an electrically tunable lens (ETL) to construct a variable-divergence vortex beam providing dynamic and stable positioning of levitated micrometer-size particles, under normal atmospheric pressure. A sensorless wavefront correction approach is used to reduce optical aberrations to generate a high quality vortex beam for particle manipulation. As a proof of concept, stable manipulation of optically-controlled axial motion of trapped particles is demonstrated with a response time of 100ms. In addition, modulation of trapping intensity provides a measure of the mass of a single, isolated particle. The driving signal of this oscillatory motion can potentially be phase-locked to an external timing signal enabling synchronization of particle delivery into the x-ray focus with XFEL pulse train.
将病毒、蛋白质和生物大分子高效递送至自由电子激光(XFEL)束的微米级焦点以进行相干衍射成像,这激发了在气态和真空环境中无接触粒子注入方法的新发展。本文阐述了我们正在进行的构建全光学粒子递送方法的工作,该方法利用皮牛级光泳力和飞牛级光压力来控制粒子递送至XFEL束中。我们将空间光调制器(SLM)和电可调透镜(ETL)相结合,以构建可变发散涡旋光束,在正常大气压下实现对悬浮微米级粒子的动态稳定定位。采用无传感器波前校正方法来减少光学像差,以生成用于粒子操纵的高质量涡旋光束。作为概念验证,展示了对捕获粒子的光控轴向运动的稳定操纵,响应时间为100毫秒。此外,捕获强度调制提供了对单个孤立粒子质量的一种度量。这种振荡运动的驱动信号有可能与外部定时信号锁相,从而实现粒子递送至X射线焦点与XFEL脉冲序列的同步。