Chemical Sciences & Engineering Division, Argonne National Laboratory, Lemont, IL 60439;
National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973.
Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4018-4024. doi: 10.1073/pnas.1720785116. Epub 2019 Feb 14.
Optical trapping has been implemented in many areas of physics and biology as a noncontact sample manipulation technique to study the structure and dynamics of nano- and mesoscale objects. It provides a unique approach for manipulating microscopic objects without inducing undesired changes in structure. Combining optical trapping with hard X-ray microscopy techniques, such as coherent diffraction imaging and crystallography, provides a nonperturbing environment where electronic and structural dynamics of an individual particle in solution can be followed in situ. It was previously shown that optical trapping allows the manipulation of micrometer-sized objects for X-ray fluorescence imaging. However, questions remain over the ability of optical trapping to position objects for X-ray diffraction measurements, which have stringent requirements for angular stability. Our work demonstrates that dynamic holographic optical tweezers are capable of manipulating single micrometer-scale anisotropic particles in a microfluidic environment with the precision and stability required for X-ray Bragg diffraction experiments-thus functioning as an "optical goniometer." The methodology can be extended to a variety of X-ray experiments and the Bragg coherent diffractive imaging of individual particles in solution, as demonstrated here, will be markedly enhanced with the advent of brighter, coherent X-ray sources.
光学捕获已在物理学和生物学的许多领域得到应用,作为一种非接触式样品操作技术,用于研究纳米和中尺度物体的结构和动力学。它提供了一种独特的方法来操纵微观物体,而不会在结构上引起不必要的变化。将光学捕获与硬 X 射线显微镜技术(如相干衍射成像和晶体学)相结合,提供了一个非干扰的环境,可以原位跟踪溶液中单个粒子的电子和结构动力学。先前已经表明,光学捕获允许对微米大小的物体进行操纵,以进行 X 射线荧光成像。然而,对于光学捕获是否能够为 X 射线衍射测量定位物体,仍然存在疑问,因为 X 射线衍射测量对角度稳定性有严格的要求。我们的工作表明,动态全息光镊能够以 X 射线布拉格衍射实验所需的精度和稳定性在微流控环境中操纵单个微米级各向异性粒子,从而充当“光学测角仪”。该方法可以扩展到各种 X 射线实验中,如这里所示,随着更亮、相干 X 射线源的出现,溶液中单个粒子的布拉格相干衍射成像将得到显著增强。