Suppr超能文献

大数据在城市中的应用。

The Uses of Big Data in Cities.

机构信息

Santa Fe Institute , Santa Fe, New Mexico.

出版信息

Big Data. 2014 Mar;2(1):12-22. doi: 10.1089/big.2013.0042. Epub 2014 Feb 7.

Abstract

There is much enthusiasm currently about the possibilities created by new and more extensive sources of data to better understand and manage cities. Here, I explore how big data can be useful in urban planning by formalizing the planning process as a general computational problem. I show that, under general conditions, new sources of data coordinated with urban policy can be applied following fundamental principles of engineering to achieve new solutions to important age-old urban problems. I also show that comprehensive urban planning is computationally intractable (i.e., practically impossible) in large cities, regardless of the amounts of data available. This dilemma between the need for planning and coordination and its impossibility in detail is resolved by the recognition that cities are first and foremost self-organizing social networks embedded in space and enabled by urban infrastructure and services. As such, the primary role of big data in cities is to facilitate information flows and mechanisms of learning and coordination by heterogeneous individuals. However, processes of self-organization in cities, as well as of service improvement and expansion, must rely on general principles that enforce necessary conditions for cities to operate and evolve. Such ideas are the core of a developing scientific theory of cities, which is itself enabled by the growing availability of quantitative data on thousands of cities worldwide, across different geographies and levels of development. These three uses of data and information technologies in cities constitute then the necessary pillars for more successful urban policy and management that encourages, and does not stifle, the fundamental role of cities as engines of development and innovation in human societies.

摘要

目前,人们对新的、更广泛的数据来源所带来的可能性充满热情,这些数据可以帮助我们更好地理解和管理城市。在这里,我通过将规划过程形式化为一个通用的计算问题,探讨了大数据在城市规划中的应用。我表明,在一般条件下,新的数据来源与城市政策相协调,可以遵循工程学的基本原则,为重要的古老城市问题提供新的解决方案。我还表明,无论数据量如何,全面的城市规划在大城市中都是计算上不可行的(即实际上不可能)。这种规划和协调的必要性与细节上的不可能性之间的困境,通过认识到城市首先是嵌入在空间中的自组织社会网络,并由城市基础设施和服务所支持来解决。因此,大数据在城市中的主要作用是促进信息流以及异质个体的学习和协调机制。然而,城市的自组织过程以及服务的改进和扩展,必须依赖于通用的原则,这些原则为城市的运作和发展创造必要的条件。这些想法是城市发展科学理论的核心,而这一理论本身又得益于全球数千个城市在不同地理位置和发展水平上的定量数据的日益普及。这三种数据和信息技术在城市中的应用构成了更成功的城市政策和管理的必要支柱,鼓励而不是扼杀城市作为人类社会发展和创新引擎的基本作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验