Suppr超能文献

稀疏奇异值分解方法在超声导波频散曲线高分辨率提取中的应用。

Sparse SVD Method for High-Resolution Extraction of the Dispersion Curves of Ultrasonic Guided Waves.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2016 Oct;63(10):1514-1524. doi: 10.1109/TUFFC.2016.2592688. Epub 2016 Jul 18.

Abstract

The 2-D Fourier transform analysis of multichannel signals is a straightforward method to extract the dispersion curves of guided modes. Basically, the time signals recorded at several positions along the waveguide are converted to the wavenumber-frequency space, so that the dispersion curves (i.e., the frequency-dependent wavenumbers) of the guided modes can be extracted by detecting peaks of energy trajectories. In order to improve the dispersion curve extraction of low-amplitude modes propagating in a cortical bone, a multiemitter and multireceiver transducer array has been developed together with an effective singular vector decomposition (SVD)-based signal processing method. However, in practice, the limited number of positions where these signals are recorded results in a much lower resolution in the wavenumber axis than in the frequency axis. This prevents a clear identification of overlapping dispersion curves. In this paper, a sparse SVD (S-SVD) method, which combines the signal-to-noise ratio improvement of the SVD-based approach with the high wavenumber resolution advantage of the sparse optimization, is presented to overcome the above-mentioned limitation. Different penalty constraints, i.e., l -norm, Frobenius norm, and revised Cauchy norm, are compared with the sparse characteristics. The regularization parameters are investigated with respect to the convergence property and wavenumber resolution. The proposed S-SVD method is investigated using synthetic wideband signals and experimental data obtained from a bone-mimicking phantom and from an ex-vivo human radius. The analysis of the results suggests that the S-SVD method has the potential to significantly enhance the wavenumber resolution and to improve the extraction of the dispersion curves.

摘要

多通道信号的二维傅里叶变换分析是提取导波色散曲线的一种直接方法。基本上,沿波导的几个位置记录的时间信号被转换到波数-频率空间,以便通过检测能量轨迹的峰值来提取导波的色散曲线(即频率相关的波数)。为了提高皮质骨中传播的低幅度模式的色散曲线提取,已经开发了多发射器和多接收器换能器阵列,以及有效的奇异向量分解(SVD)为基础的信号处理方法。然而,在实际中,记录这些信号的位置数量有限,导致波数轴上的分辨率比频率轴上的分辨率低得多。这使得重叠的色散曲线无法清晰识别。在本文中,提出了一种稀疏 SVD(S-SVD)方法,该方法将基于 SVD 的方法的信噪比提高与稀疏优化的高波数分辨率优势相结合,以克服上述限制。比较了不同的惩罚约束,即 l-范数、Frobenius 范数和修正的 Cauchy 范数,与稀疏特性相结合。研究了正则化参数与收敛特性和波数分辨率的关系。使用宽带合成信号以及来自仿生骨模拟体和离体人桡骨的实验数据对所提出的 S-SVD 方法进行了研究。结果分析表明,S-SVD 方法具有显著提高波数分辨率和改善色散曲线提取的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验