IEEE Trans Cybern. 2017 Sep;47(9):2824-2837. doi: 10.1109/TCYB.2016.2586191. Epub 2016 Jul 19.
Multiobjective evolutionary algorithm based on decomposition (MOEA/D) decomposes a multiobjective optimization problem (MOP) into a number of scalar optimization subproblems and then solves them in parallel. In many MOEA/D variants, each subproblem is associated with one and only one solution. An underlying assumption is that each subproblem has a different Pareto-optimal solution, which may not be held, for irregular Pareto fronts (PFs), e.g., disconnected and degenerate ones. In this paper, we propose a new variant of MOEA/D with sorting-and-selection (MOEA/D-SAS). Different from other selection schemes, the balance between convergence and diversity is achieved by two distinctive components, decomposition-based-sorting (DBS) and angle-based-selection (ABS). DBS only sorts L closest solutions to each subproblem to control the convergence and reduce the computational cost. The parameter L has been made adaptive based on the evolutionary process. ABS takes use of angle information between solutions in the objective space to maintain a more fine-grained diversity. In MOEA/D-SAS, different solutions can be associated with the same subproblems; and some subproblems are allowed to have no associated solution, more flexible to MOPs or many-objective optimization problems (MaOPs) with different shapes of PFs. Comprehensive experimental studies have shown that MOEA/D-SAS outperforms other approaches; and is especially effective on MOPs or MaOPs with irregular PFs. Moreover, the computational efficiency of DBS and the effects of ABS in MOEA/D-SAS are also investigated and discussed in detail.
基于分解的多目标进化算法(MOEA/D)将多目标优化问题(MOP)分解为多个标量优化子问题,然后并行求解。在许多 MOEA/D 变体中,每个子问题都与一个且仅一个解相关联。一个基本假设是,每个子问题都有一个不同的帕累托最优解,但对于不规则的帕累托前沿(PF),例如不连通和退化的 PF,可能不成立。在本文中,我们提出了一种具有排序和选择(MOEA/D-SAS)的 MOEA/D 的新变体。与其他选择方案不同,通过两个独特的组件,基于分解的排序(DBS)和基于角度的选择(ABS),实现了收敛性和多样性之间的平衡。DBS 仅对每个子问题的 L 个最近解进行排序,以控制收敛并降低计算成本。参数 L 已根据进化过程自适应调整。ABS 利用目标空间中解之间的角度信息来保持更细粒度的多样性。在 MOEA/D-SAS 中,不同的解可以与相同的子问题相关联;并且允许某些子问题没有相关的解,对于具有不同形状 PF 的 MOP 或多目标优化问题(MaOP)更加灵活。综合实验研究表明,MOEA/D-SAS 优于其他方法;并且对具有不规则 PF 的 MOP 或 MaOP 特别有效。此外,还详细研究和讨论了 MOEA/D-SAS 中的 DBS 的计算效率和 ABS 的影响。