Browning Cynthia L, Qin Qin, Kelly Deborah F, Prakash Rohit, Vanoli Fabio, Jasin Maria, Wise John Pierce
*Wise Laboratory of Environmental and Genetic Toxicology, Portland, Maine 04104 Graduate School of Biomedical Science and Engineering, University of Maine, Orono, Maine 04469.
*Wise Laboratory of Environmental and Genetic Toxicology, Portland, Maine 04104 Virginia Tech Carilion Research Institute, Roanoke, Virginia 24016.
Toxicol Sci. 2016 Sep;153(1):70-8. doi: 10.1093/toxsci/kfw103. Epub 2016 Jul 22.
Genomic instability is one of the primary models of carcinogenesis and a feature of almost all cancers. Homologous recombination (HR) repair protects against genomic instability by maintaining high genomic fidelity during the repair of DNA double strand breaks. The defining step of HR repair is the formation of the Rad51 nucleofilament, which facilitates the search for a homologous sequence and invasion of the template DNA strand. Particulate hexavalent chromium (Cr(VI)), a human lung carcinogen, induces DNA double strand breaks and chromosome instability. Since the loss of HR repair increases Cr(VI)-induced chromosome instability, we investigated the effect of extended Cr(VI) exposure on HR repair. We show acute (24 h) Cr(VI) exposure induces a normal HR repair response. In contrast, prolonged (120 h) exposure to particulate Cr(VI) inhibited HR repair and Rad51 nucleofilament formation. Prolonged Cr(VI) exposure had a profound effect on Rad51, evidenced by reduced protein levels and Rad51 mislocalization to the cytoplasm. The response of proteins involved in Rad51 nuclear import and nucleofilament formation displayed varying responses to prolonged Cr(VI) exposure. BRCA2 formed nuclear foci after prolonged Cr(VI) exposure, while Rad51C foci formation was suppressed. These results suggest that particulate Cr(VI), a major chemical carcinogen, inhibits HR repair by targeting Rad51, causing DNA double strand breaks to be repaired by a low fidelity, Rad51-independent repair pathway. These results further enhance our understanding of the underlying mechanism of Cr(VI)-induced chromosome instability and thus, carcinogenesis.
基因组不稳定是癌症发生的主要模式之一,也是几乎所有癌症的一个特征。同源重组(HR)修复通过在DNA双链断裂修复过程中维持高基因组保真度来防止基因组不稳定。HR修复的决定性步骤是形成Rad51核丝,它有助于寻找同源序列并侵入模板DNA链。颗粒状六价铬(Cr(VI))是一种人类肺癌致癌物,可诱导DNA双链断裂和染色体不稳定。由于HR修复功能的丧失会增加Cr(VI)诱导的染色体不稳定,我们研究了延长Cr(VI)暴露对HR修复的影响。我们发现急性(24小时)Cr(VI)暴露会诱导正常的HR修复反应。相比之下,长时间(120小时)暴露于颗粒状Cr(VI)会抑制HR修复和Rad51核丝的形成。长时间的Cr(VI)暴露对Rad51有深远影响,表现为蛋白质水平降低和Rad51错误定位到细胞质中。参与Rad51核输入和核丝形成的蛋白质对长时间Cr(VI)暴露的反应各不相同。长时间Cr(VI)暴露后,BRCA2形成核灶,而Rad51C灶的形成受到抑制。这些结果表明,颗粒状Cr(VI)作为一种主要的化学致癌物,通过靶向Rad51抑制HR修复,导致DNA双链断裂通过低保真、不依赖Rad51的修复途径进行修复。这些结果进一步加深了我们对Cr(VI)诱导染色体不稳定及致癌作用潜在机制的理解。