Panda Saswati, Srivastava Shekhar, Li Zhai, Vaeth Martin, Fuhs Stephen R, Hunter Tony, Skolnik Edward Y
Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY 10016, USA; The Helen L. and Martin S. Kimmel Center for Biology and Medicine, New York University Langone Medical Center, New York, NY 10016, USA; Skirball Institute for Biomolecular Medicine, New York University Langone Medical Center, New York, NY 10016, USA.
Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY 10016, USA; The Helen L. and Martin S. Kimmel Center for Biology and Medicine, New York University Langone Medical Center, New York, NY 10016, USA; Skirball Institute for Biomolecular Medicine, New York University Langone Medical Center, New York, NY 10016, USA; Division of Nephrology, New York University Langone Medical Center, New York, NY 10016, USA.
Mol Cell. 2016 Aug 4;63(3):457-69. doi: 10.1016/j.molcel.2016.06.021. Epub 2016 Jul 21.
Whereas phosphorylation of serine, threonine, and tyrosine is exceedingly well characterized, the role of histidine phosphorylation in mammalian signaling is largely unexplored. Here we show that phosphoglycerate mutase family 5 (PGAM5) functions as a phosphohistidine phosphatase that specifically associates with and dephosphorylates the catalytic histidine on nucleoside diphosphate kinase B (NDPK-B). By dephosphorylating NDPK-B, PGAM5 negatively regulates CD4(+) T cells by inhibiting NDPK-B-mediated histidine phosphorylation and activation of the K(+) channel KCa3.1, which is required for TCR-stimulated Ca(2+) influx and cytokine production. Using recently developed monoclonal antibodies that specifically recognize phosphorylation of nitrogens at the N1 (1-pHis) or N3 (3-pHis) positions of the imidazole ring, we detect for the first time phosphoisoform-specific regulation of histidine-phosphorylated proteins in vivo, and we link these modifications to TCR signaling. These results represent an important step forward in studying the role of histidine phosphorylation in mammalian biology and disease.
虽然丝氨酸、苏氨酸和酪氨酸的磷酸化已得到充分研究,但组氨酸磷酸化在哺乳动物信号传导中的作用在很大程度上仍未被探索。在此,我们表明磷酸甘油酸变位酶家族5(PGAM5)作为一种磷酸组氨酸磷酸酶,特异性地与核苷二磷酸激酶B(NDPK-B)上的催化性组氨酸结合并使其去磷酸化。通过使NDPK-B去磷酸化,PGAM5通过抑制NDPK-B介导的组氨酸磷酸化和钾离子通道KCa3.1的激活来负向调节CD4(+) T细胞,而KCa3.1是TCR刺激的钙离子内流和细胞因子产生所必需的。使用最近开发的特异性识别咪唑环N1(1-磷酸组氨酸)或N3(3-磷酸组氨酸)位置氮原子磷酸化的单克隆抗体,我们首次在体内检测到组氨酸磷酸化蛋白的磷酸异构体特异性调节,并将这些修饰与TCR信号传导联系起来。这些结果代表了在研究组氨酸磷酸化在哺乳动物生物学和疾病中的作用方面向前迈出的重要一步。