Suppr超能文献

基于硼酸-葡萄糖络合作用的可注射和葡萄糖响应水凝胶。

Injectable and Glucose-Responsive Hydrogels Based on Boronic Acid-Glucose Complexation.

机构信息

Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University , Columbus, Ohio 43210, United States.

David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States.

出版信息

Langmuir. 2016 Aug 30;32(34):8743-7. doi: 10.1021/acs.langmuir.5b04755. Epub 2016 Aug 17.

Abstract

Injectable hydrogels have been widely used for a number of biomedical applications. Here, we report a new strategy to form an injectable and glucose-responsive hydrogel using the boronic acid-glucose complexation. The ratio of boronic acid and glucose functional groups is critical for hydrogel formation. In our system, polymers with 10-60% boronic acid, with the balance being glucose-modified, are favorable to form hydrogels. These hydrogels are shear-thinning and self-healing, recovering from shear-induced flow to a gel state within seconds. More importantly, these polymers displayed glucose-responsive release of an encapsulated model drug. The hydrogel reported here is an injectable and glucose-responsive hydrogel constructed from the complexation of boronic acid and glucose within a single component polymeric material.

摘要

注射水凝胶已被广泛应用于多种生物医学领域。在这里,我们报告了一种新的策略,即利用硼酸-葡萄糖的络合作用形成一种可注射和葡萄糖响应的水凝胶。硼酸和葡萄糖官能团的比例对于水凝胶的形成至关重要。在我们的体系中,具有 10-60%硼酸的聚合物,其余部分为葡萄糖修饰的聚合物,有利于形成水凝胶。这些水凝胶具有剪切稀化和自修复特性,能够在几秒钟内从剪切诱导的流动状态恢复到凝胶状态。更重要的是,这些聚合物表现出对包封模型药物的葡萄糖响应释放。本报告中的水凝胶是由硼酸和葡萄糖在单一组成的聚合物材料内的络合作用构建的可注射和葡萄糖响应水凝胶。

相似文献

1
Injectable and Glucose-Responsive Hydrogels Based on Boronic Acid-Glucose Complexation.
Langmuir. 2016 Aug 30;32(34):8743-7. doi: 10.1021/acs.langmuir.5b04755. Epub 2016 Aug 17.
2
Injectable Self-Healing Glucose-Responsive Hydrogels with pH-Regulated Mechanical Properties.
Adv Mater. 2016 Jan 6;28(1):86-91. doi: 10.1002/adma.201502902. Epub 2015 Nov 5.
3
Dynamic Bonds between Boronic Acid and Alginate: Hydrogels with Stretchable, Self-Healing, Stimuli-Responsive, Remoldable, and Adhesive Properties.
Biomacromolecules. 2018 Jun 11;19(6):2053-2061. doi: 10.1021/acs.biomac.8b00144. Epub 2018 Apr 11.
4
Glucose-responsive hydrogels based on dynamic covalent chemistry and inclusion complexation.
Soft Matter. 2014 Apr 21;10(15):2671-8. doi: 10.1039/c3sm53059k.
5
Phenylboronic Acid Appended Pyrene-Based Low-Molecular-Weight Injectable Hydrogel: Glucose-Stimulated Insulin Release.
Chemistry. 2015 Aug 17;21(34):12042-52. doi: 10.1002/chem.201501170. Epub 2015 Jul 15.
6
Supramolecular Hydrogel Derived from a C-Symmetric Boronic Acid Derivative for Stimuli-Responsive Release of Insulin and Doxorubicin.
Langmuir. 2018 Jan 16;34(2):685-692. doi: 10.1021/acs.langmuir.7b03326. Epub 2017 Dec 27.
7
An injectable particle-hydrogel hybrid system for glucose-regulatory insulin delivery.
Acta Biomater. 2017 Dec;64:334-345. doi: 10.1016/j.actbio.2017.09.044. Epub 2017 Sep 30.
8
Injectable, Self-Healing, and Multi-Responsive Hydrogels via Dynamic Covalent Bond Formation between Benzoxaborole and Hydroxyl Groups.
Biomacromolecules. 2019 Feb 11;20(2):1028-1035. doi: 10.1021/acs.biomac.8b01652. Epub 2019 Jan 11.
9
Injectable dual redox responsive diselenide-containing poly(ethylene glycol) hydrogel.
J Biomed Mater Res A. 2017 Sep;105(9):2451-2460. doi: 10.1002/jbm.a.36103. Epub 2017 Jun 6.
10
A glucose-sensitive block glycopolymer hydrogel based on dynamic boronic ester bonds for insulin delivery.
Carbohydr Res. 2017 Jun 5;445:32-39. doi: 10.1016/j.carres.2017.04.006. Epub 2017 Apr 6.

引用本文的文献

1
pH-responsive release of small molecule pharmaceuticals from a reworked adsorbent hydrogel for environmental applications.
RSC Adv. 2025 Aug 20;15(36):29462-29478. doi: 10.1039/d5ra03794h. eCollection 2025 Aug 18.
2
Single- and Multi-Network Hydrogels for Soft Electronics-A Review.
Gels. 2025 Jun 21;11(7):480. doi: 10.3390/gels11070480.
3
Modulating Thermal Stability and Flexibility in Chitosan Films with Neutral Polyol-Boric Acid Complexes.
Biomacromolecules. 2025 Jul 14;26(7):4174-4183. doi: 10.1021/acs.biomac.5c00177. Epub 2025 Jun 26.
4
Regulating inflammation microenvironment and tenogenic differentiation as sequential therapy promotes tendon healing in diabetic rats.
J Orthop Translat. 2025 Jun 5;53:63-81. doi: 10.1016/j.jot.2025.04.015. eCollection 2025 Jul.
5
Polyacrylamide Hydrogels with Reversibly Photocontrolled Stiffness for 2D Mechanobiology.
ACS Appl Mater Interfaces. 2025 Jun 18;17(24):34997-35008. doi: 10.1021/acsami.5c02909. Epub 2025 Jun 6.
6
Nanocomposite Hydrogel-Based Optical Fiber Probe for Continuous Glucose Sensing.
Small Sci. 2023 Dec 3;4(2):2300189. doi: 10.1002/smsc.202300189. eCollection 2024 Feb.
7
Glucose-Responsive Materials for Smart Insulin Delivery: From Protein-Based to Protein-Free Design.
ACS Mater Au. 2025 Jan 31;5(2):239-252. doi: 10.1021/acsmaterialsau.4c00138. eCollection 2025 Mar 12.
8
Advances in bioinspired polymer hydrogel systems with biomedical functionalities.
Sci Technol Adv Mater. 2025 Mar 3;26(1):2469490. doi: 10.1080/14686996.2025.2469490. eCollection 2025.
9
Hydrogel-based therapies for diabetic foot ulcers: recent developments and clinical implications.
Burns Trauma. 2025 Feb 6;13:tkae084. doi: 10.1093/burnst/tkae084. eCollection 2025.
10
Injectable and 3D-Printable Semi-Interpenetrating Polymer Networks Based on Modified Sodium Alginate for Cell Spheroid Formation.
Biomacromolecules. 2025 Jan 13;26(1):567-578. doi: 10.1021/acs.biomac.4c01343. Epub 2024 Dec 29.

本文引用的文献

1
Injectable Self-Healing Glucose-Responsive Hydrogels with pH-Regulated Mechanical Properties.
Adv Mater. 2016 Jan 6;28(1):86-91. doi: 10.1002/adma.201502902. Epub 2015 Nov 5.
2
Managing diabetes with nanomedicine: challenges and opportunities.
Nat Rev Drug Discov. 2015 Jan;14(1):45-57. doi: 10.1038/nrd4477. Epub 2014 Nov 28.
3
Emerging micro- and nanotechnology based synthetic approaches for insulin delivery.
Chem Soc Rev. 2014 May 21;43(10):3595-629. doi: 10.1039/c3cs60436e. Epub 2014 Mar 14.
4
Ultrasound-triggered regulation of blood glucose levels using injectable nano-network.
Adv Healthc Mater. 2014 Jun;3(6):811-6. doi: 10.1002/adhm.201300490. Epub 2013 Nov 19.
5
Glucose-responsive microgels integrated with enzyme nanocapsules for closed-loop insulin delivery.
ACS Nano. 2013 Aug 27;7(8):6758-66. doi: 10.1021/nn401617u. Epub 2013 Jul 8.
6
Injectable nano-network for glucose-mediated insulin delivery.
ACS Nano. 2013 May 28;7(5):4194-201. doi: 10.1021/nn400630x. Epub 2013 May 2.
7
Supramolecular polymeric hydrogels.
Chem Soc Rev. 2012 Sep 21;41(18):6195-214. doi: 10.1039/c2cs35264h. Epub 2012 Aug 13.
8
Sustained release of proteins from high water content supramolecular polymer hydrogels.
Biomaterials. 2012 Jun;33(18):4646-52. doi: 10.1016/j.biomaterials.2012.02.030. Epub 2012 Mar 27.
9
A synthetic approach toward a self-regulated insulin delivery system.
Angew Chem Int Ed Engl. 2012 Feb 27;51(9):2124-8. doi: 10.1002/anie.201106252. Epub 2011 Dec 9.
10
Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications.
Chem Soc Rev. 2012 Mar 21;41(6):2193-221. doi: 10.1039/c1cs15203c. Epub 2011 Nov 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验