Suppr超能文献

无症状受试者胫距关节和距下关节的体内运动学:一项高速双荧光透视研究。

In Vivo Kinematics of the Tibiotalar and Subtalar Joints in Asymptomatic Subjects: A High-Speed Dual Fluoroscopy Study.

作者信息

Roach Koren E, Wang Bibo, Kapron Ashley L, Fiorentino Niccolo M, Saltzman Charles L, Bo Foreman K, Anderson Andrew E

出版信息

J Biomech Eng. 2016 Sep 1;138(9):0910061-9. doi: 10.1115/1.4034263.

Abstract

Measurements of joint kinematics are essential to understand the pathomechanics of ankle disease and the effects of treatment. Traditional motion capture techniques do not provide measurements of independent tibiotalar and subtalar joint motion. In this study, high-speed dual fluoroscopy images of ten asymptomatic adults were acquired during treadmill walking at 0.5 m/s and 1.0 m/s and a single-leg, balanced heel-rise. Three-dimensional (3D) CT models of each bone and dual fluoroscopy images were used to quantify in vivo kinematics for the tibiotalar and subtalar joints. Dynamic tibiotalar and subtalar mean joint angles often exhibited opposing trends during captured stance. During both speeds of walking, the tibiotalar joint had significantly greater dorsi/plantarflexion (D/P) angular ROM than the subtalar joint while the subtalar joint demonstrated greater inversion/eversion (In/Ev) and internal/external rotation (IR/ER) than the tibiotalar joint. During balanced heel-rise, only D/P and In/Ev were significantly different between the tibiotalar and subtalar joints. Translational ROM in the anterior/posterior (AP) direction was significantly greater in the subtalar than the tibiotalar joint during walking at 0.5 m/s. Overall, our results support the long-held belief that the tibiotalar joint is primarily responsible for D/P, while the subtalar joint facilitates In/Ev and IR/ER. However, the subtalar joint provided considerable D/P rotation, and the tibiotalar joint rotated about all three axes, which, along with translational motion, suggests that each joint undergoes complex, 3D motion.

摘要

关节运动学测量对于理解踝关节疾病的病理力学及治疗效果至关重要。传统的运动捕捉技术无法提供独立的胫距关节和距下关节运动测量。在本研究中,对10名无症状成年人在以0.5m/s和1.0m/s的速度在跑步机上行走以及单腿平衡提踵过程中采集了高速双荧光透视图像。利用每块骨骼的三维(3D)CT模型和双荧光透视图像来量化胫距关节和距下关节的体内运动学。在捕捉到的站立过程中,动态胫距关节和距下关节的平均关节角度常常呈现相反的趋势。在两种行走速度下,胫距关节的背屈/跖屈(D/P)角运动范围均显著大于距下关节,而距下关节在内翻/外翻(In/Ev)和内旋/外旋(IR/ER)方面则大于胫距关节。在平衡提踵过程中,胫距关节和距下关节之间仅D/P和In/Ev存在显著差异。在以0.5m/s的速度行走时,距下关节在前后(AP)方向上的平移运动范围显著大于胫距关节。总体而言,我们的结果支持长期以来的观点,即胫距关节主要负责D/P运动,而距下关节则促进In/Ev和IR/ER运动。然而,距下关节提供了相当大的D/P旋转,并且胫距关节围绕所有三个轴旋转以及平移运动,这表明每个关节都经历复杂的三维运动。

相似文献

2
Predicting tibiotalar and subtalar joint angles from skin-marker data with dual-fluoroscopy as a reference standard.
Gait Posture. 2016 Sep;49:136-143. doi: 10.1016/j.gaitpost.2016.06.031. Epub 2016 Jun 24.
5
Total Ankle Replacement Provides Symmetrical Postoperative Kinematics: A Biplane Fluoroscopy Imaging Study.
Foot Ankle Int. 2022 Jun;43(6):818-829. doi: 10.1177/10711007221078001. Epub 2022 Mar 16.
6
Accuracy and feasibility of high-speed dual fluoroscopy and model-based tracking to measure in vivo ankle arthrokinematics.
Gait Posture. 2015 May;41(4):888-93. doi: 10.1016/j.gaitpost.2015.03.008. Epub 2015 Mar 21.
7
In vivo kinematics of functional ankle instability patients during the stance phase of walking.
Gait Posture. 2019 Sep;73:262-268. doi: 10.1016/j.gaitpost.2019.07.377. Epub 2019 Jul 30.
8
Effects of footwear on three-dimensional tibiotalar and subtalar joint motion during running.
J Biomech. 2014 Aug 22;47(11):2647-53. doi: 10.1016/j.jbiomech.2014.05.016. Epub 2014 Jun 6.
9
Effect of post-traumatic tibiotalar osteoarthritis on kinematics of the ankle joint complex.
Foot Ankle Int. 2009 Aug;30(8):734-40. doi: 10.3113/FAI.2009.0734.
10
Three-dimensional kinematics of the talocrural and subtalar joints during drop landing.
J Appl Biomech. 2014 Feb;30(1):160-5. doi: 10.1123/jab.2012-0192. Epub 2013 May 13.

引用本文的文献

1
New insights into chronic ankle instability: an evaluation of three-dimensional motion and stability of the ankle joint complex.
Front Bioeng Biotechnol. 2025 Mar 26;13:1556291. doi: 10.3389/fbioe.2025.1556291. eCollection 2025.
2
Which Measuring Method Is Better for Reflecting Subtalar Joint Stiffness?
J Clin Med. 2025 Mar 11;14(6):1887. doi: 10.3390/jcm14061887.
3
Dynamic subtalar joint space measurement analysis following tibiotalar arthrodesis and total ankle replacement.
Clin Biomech (Bristol). 2025 Mar;123:106464. doi: 10.1016/j.clinbiomech.2025.106464. Epub 2025 Feb 17.
4
Human talocrural contributions to ankle joint complex kinematics during walking, running, and hopping.
Heliyon. 2024 Dec 19;11(1):e41301. doi: 10.1016/j.heliyon.2024.e41301. eCollection 2025 Jan 15.
5
Talar and Calcaneal Coordinate Axes Definitions across Foot Pathologies.
J Biomech. 2024 Oct;175:112298. doi: 10.1016/j.jbiomech.2024.112298. Epub 2024 Aug 30.
6
[An update on clinical gait analysis : Current developments and applications].
Orthopadie (Heidelb). 2024 Jul;53(7):494-502. doi: 10.1007/s00132-024-04516-4. Epub 2024 Jun 7.
7
In Vivo Total Ankle Arthroplasty Kinematic Evaluation: A Prospective Radiostereometric Analysis.
Biomedicines. 2024 Mar 22;12(4):705. doi: 10.3390/biomedicines12040705.
8
Automatic anatomical foot and ankle coordinate toolbox.
Front Bioeng Biotechnol. 2023 Oct 31;11:1255464. doi: 10.3389/fbioe.2023.1255464. eCollection 2023.
10
Present and future of gait assessment in clinical practice: Towards the application of novel trends and technologies.
Front Med Technol. 2022 Dec 16;4:901331. doi: 10.3389/fmedt.2022.901331. eCollection 2022.

本文引用的文献

2
Plantar-flexion of the ankle joint complex in terminal stance is initiated by subtalar plantar-flexion: A bi-planar fluoroscopy study.
Gait Posture. 2015 Oct;42(4):424-9. doi: 10.1016/j.gaitpost.2015.07.009. Epub 2015 Jul 22.
3
Accuracy and feasibility of high-speed dual fluoroscopy and model-based tracking to measure in vivo ankle arthrokinematics.
Gait Posture. 2015 May;41(4):888-93. doi: 10.1016/j.gaitpost.2015.03.008. Epub 2015 Mar 21.
4
Physiologically corrected coupled motion during gait analysis using a model-based approach.
Gait Posture. 2015 Jan;41(1):319-22. doi: 10.1016/j.gaitpost.2014.09.012. Epub 2014 Sep 28.
5
Effects of footwear on three-dimensional tibiotalar and subtalar joint motion during running.
J Biomech. 2014 Aug 22;47(11):2647-53. doi: 10.1016/j.jbiomech.2014.05.016. Epub 2014 Jun 6.
6
Normative rearfoot motion during barefoot and shod walking using biplane fluoroscopy.
Knee Surg Sports Traumatol Arthrosc. 2016 Apr;24(4):1402-8. doi: 10.1007/s00167-014-3084-4. Epub 2014 Jun 6.
7
High-speed X-ray video demonstrates significant skin movement errors with standard optical kinematics during rat locomotion.
J Neurosci Methods. 2010 Jan 30;186(1):18-24. doi: 10.1016/j.jneumeth.2009.10.017. Epub 2009 Nov 10.
8
In vivo kinematics of the tibiotalar joint after lateral ankle instability.
Am J Sports Med. 2009 Nov;37(11):2241-8. doi: 10.1177/0363546509337578. Epub 2009 Jul 21.
10
Ankle and subtalar kinematics during dorsiflexion-plantarflexion activities.
Foot Ankle Int. 2009 Apr;30(4):361-6. doi: 10.3113/FAI.2009.0361.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验