Pérez Adam A, Liu Zhenfeng, Rodionov Dmitry A, Li Zhongkui, Bryant Donald A
Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA.
Bioinformatics and Systems Biology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
J Bacteriol. 2016 Sep 9;198(19):2743-52. doi: 10.1128/JB.00475-16. Print 2016 Oct 1.
The euryhaline cyanobacterium Synechococcus sp. strain PCC 7002 has an obligate requirement for exogenous vitamin B12 (cobalamin), but little is known about the roles of this compound in cyanobacteria. Bioinformatic analyses suggest that only the terminal enzyme in methionine biosynthesis, methionine synthase, requires cobalamin as a coenzyme in Synechococcus sp. strain PCC 7002. Methionine synthase (MetH) catalyzes the transfer of a methyl group from N(5)-methyl-5,6,7,8-tetrahydrofolate to l-homocysteine during l-methionine synthesis and uses methylcobalamin as an intermediate methyl donor. Numerous bacteria and plants alternatively employ a cobalamin-independent methionine synthase isozyme, MetE, that catalyzes the same methyl transfer reaction as MetH but uses N(5)-methyl-5,6,7,8-tetrahydrofolate directly as the methyl donor. The cobalamin auxotrophy of Synechococcus sp. strain PCC 7002 was complemented by using the metE gene from the closely related cyanobacterium Synechococcus sp. strain PCC 73109, which possesses genes for both methionine synthases. This result suggests that methionine biosynthesis is probably the sole use of cobalamin in Synechococcus sp. strain PCC 7002. Furthermore, a cobalamin-repressible gene expression system was developed in Synechococcus sp. strain PCC 7002 that was used to validate the presence of a cobalamin riboswitch in the promoter region of metE from Synechococcus sp. strain PCC 73109. This riboswitch acts as a cobalamin-dependent transcriptional attenuator for metE in that organism.
Synechococcus sp. strain PCC 7002 is a cobalamin auxotroph because, like eukaryotic marine algae, it uses a cobalamin-dependent methionine synthase (MetH) for the final step of l-methionine biosynthesis but cannot synthesize cobalamin de novo Heterologous expression of metE, encoding cobalamin-independent methionine synthase, from Synechococcus sp. strain PCC 73109, relieved this auxotrophy and enabled the construction of a truly autotrophic Synechococcus sp. strain PCC 7002 more suitable for large-scale industrial applications. Characterization of a cobalamin riboswitch expands the genetic toolbox for Synechococcus sp. strain PCC 7002 by providing a cobalamin-repressible expression system.
广盐性蓝藻聚球藻属PCC 7002菌株绝对需要外源维生素B12(钴胺素),但对于这种化合物在蓝藻中的作用知之甚少。生物信息学分析表明,在聚球藻属PCC 7002菌株中,只有甲硫氨酸生物合成途径中的末端酶甲硫氨酸合酶需要钴胺素作为辅酶。甲硫氨酸合酶(MetH)在L-甲硫氨酸合成过程中催化将N(5)-甲基-5,6,7,8-四氢叶酸上的甲基转移至L-高半胱氨酸,并使用甲基钴胺素作为中间甲基供体。许多细菌和植物则使用一种不依赖钴胺素的甲硫氨酸合酶同工酶MetE,它催化与MetH相同的甲基转移反应,但直接使用N(5)-甲基-5,6,7,8-四氢叶酸作为甲基供体。聚球藻属PCC 7002菌株的钴胺素营养缺陷型通过使用来自密切相关的蓝藻聚球藻属PCC 73109菌株的metE基因得到了互补,该菌株拥有两种甲硫氨酸合酶的基因。这一结果表明,甲硫氨酸生物合成可能是聚球藻属PCC 7002菌株中钴胺素的唯一用途。此外,在聚球藻属PCC 7002菌株中开发了一种钴胺素可抑制的基因表达系统,用于验证聚球藻属PCC 73109菌株metE启动子区域中钴胺素核糖开关的存在。这种核糖开关在该生物体中作为metE的一种依赖钴胺素的转录衰减子发挥作用。
聚球藻属PCC 7002菌株是一种钴胺素营养缺陷型,因为与真核海洋藻类一样,它在L-甲硫氨酸生物合成的最后一步使用依赖钴胺素的甲硫氨酸合酶(MetH),但无法从头合成钴胺素。来自聚球藻属PCC 73109菌株的编码不依赖钴胺素的甲硫氨酸合酶的metE基因的异源表达缓解了这种营养缺陷型,并使得构建出一种更适合大规模工业应用的真正自养的聚球藻属PCC 7002菌株成为可能。对钴胺素核糖开关的表征通过提供一种钴胺素可抑制的表达系统,扩展了聚球藻属PCC 7002菌株的遗传工具箱。