Leipzig University, Institute of Biochemistry, Brüderstraße 34, 04103, Leipzig, Germany.
Helmholtz Centre for Environmental Research - UFZ, Isotope Biogeochemistry, Permoserstraße 15, 04318, Leipzig, Germany.
Sci Rep. 2020 Feb 7;10(1):2100. doi: 10.1038/s41598-020-58873-z.
Methionine synthases are essential enzymes for amino acid and methyl group metabolism in all domains of life. Here, we describe a putatively anciently derived type of methionine synthase yet unknown in bacteria, here referred to as core-MetE. The enzyme appears to represent a minimal MetE form and transfers methyl groups from methylcobalamin instead of methyl-tetrahydrofolate to homocysteine. Accordingly, it does not possess the tetrahydrofolate binding domain described for canonical bacterial MetE proteins. In Dehalococcoides mccartyi strain CBDB1, an obligate anaerobic, mesophilic, slowly growing organohalide-respiring bacterium, it is encoded by the locus cbdbA481. In line with the observation to not accept methyl groups from methyl-tetrahydrofolate, all known genomes of bacteria of the class Dehalococcoidia lack metF encoding for methylene-tetrahydrofolate reductase synthesizing methyl-tetrahydrofolate, but all contain a core-metE gene. We heterologously expressed core-MetE in E. coli and purified the 38 kDa protein. Core-MetE exhibited Michaelis-Menten kinetics with respect to methylcob(III)alamin (K ≈ 240 µM) and L-homocysteine (K ≈ 50 µM). Only methylcob(III)alamin was found to be active as methyl donor with a k ≈ 60 s. Core-MetE did not functionally complement metE-deficient E. coli strain DH5α (ΔmetE::kan) suggesting that core-MetE and the canonical MetE enzyme from E. coli have different enzymatic specificities also in vivo. Core-MetE appears to be similar to a MetE-ancestor evolved before LUCA (last universal common ancestor) using methylated cobalamins as methyl donor whereas the canonical MetE consists of a tandem repeat and might have evolved by duplication of the core-MetE and diversification of the N-terminal part to a tetrahydrofolate-binding domain.
甲硫氨酸合酶是所有生命领域中氨基酸和甲基基团代谢所必需的酶。在这里,我们描述了一种在细菌中尚未发现的假定古老的甲硫氨酸合酶,我们称之为核心-MetE。该酶似乎代表了一种最小的 MetE 形式,它将甲基从甲基钴胺素转移到高半胱氨酸,而不是从甲基四氢叶酸转移到高半胱氨酸。因此,它不具有经典细菌 MetE 蛋白所描述的四氢叶酸结合结构域。在严格厌氧、嗜中温、生长缓慢的有机卤代物呼吸细菌 Dehalococcoides mccartyi 菌株 CBDB1 中,它由 locus cbdbA481 编码。与观察到不接受甲基四氢叶酸的甲基基团一致,所有已知的 Dehalococcoidia 类细菌的基因组都缺乏编码合成甲基四氢叶酸的亚甲基四氢叶酸还原酶的 metF,但都包含一个核心-metE 基因。我们在大肠杆菌中异源表达了核心-MetE,并对 38 kDa 的蛋白质进行了纯化。核心-MetE 对甲基钴胺素(K ≈ 240 µM)和 L-高半胱氨酸(K ≈ 50 µM)表现出米氏动力学。仅发现甲基钴胺素是有效的甲基供体,k ≈ 60 s。核心-MetE 不能在功能上补充 metE 缺陷型大肠杆菌菌株 DH5α(ΔmetE::kan),这表明核心-MetE 和大肠杆菌的经典 MetE 酶在体内也具有不同的酶特异性。核心-MetE 似乎与 LUCA(最后一个普遍共同祖先)之前进化的 MetE 祖先相似,使用甲基化钴胺素作为甲基供体,而经典的 MetE 由串联重复组成,可能是通过核心-MetE 的复制和 N-末端部分向四氢叶酸结合结构域的多样化而进化而来。