Pérez Adam A, Rodionov Dmitry A, Bryant Donald A
Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA.
Bioinformatics and Systems Biology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
J Bacteriol. 2016 Sep 9;198(19):2753-61. doi: 10.1128/JB.00476-16. Print 2016 Oct 1.
The cyanobacterium Synechococcus sp. strain PCC 7002 is a cobalamin auxotroph and utilizes this coenzyme solely for the synthesis of l-methionine by methionine synthase (MetH). Synechococcus sp. strain PCC 7002 is unable to synthesize cobalamin de novo, and because of the large size of this tetrapyrrole, an active-transport system must exist for cobalamin uptake. Surprisingly, no cobalamin transport system was identified in the initial annotation of the genome of this organism. With more sophisticated in silico prediction tools, a btuB-cpdA-btuC-btuF operon encoding components putatively required for a B12 uptake (btu) system was identified. The expression of these genes was predicted to be controlled by a cobalamin riboswitch. Global transcriptional profiling by high-throughput RNA sequencing of a cobalamin-independent form of Synechococcus sp. strain PCC 7002 grown in the absence or presence of cobalamin confirmed regulation of the btu operon by cobalamin. Pérez et al. (A. A. Pérez, Z. Liu, D. A. Rodionov, Z. Li, and D. A. Bryant, J Bacteriol 198:2743-2752, 2016, http://dx.doi.org/10.1128/JB.00475-16) developed a cobalamin-dependent yellow fluorescent protein reporter system in a Synechococcus sp. strain PCC 7002 variant that had been genetically modified to allow cobalamin-independent growth. This reporter system was exploited to validate components of the btu uptake system by assessing the ability of targeted mutants to transport cobalamin. The btuB promoter and a variant counterpart mutated in an essential element of the predicted cobalamin riboswitch were fused to a yfp reporter. The combined data indicate that the btuB-cpdA-btuF-btuC operon in this cyanobacterium is transcriptionally regulated by a cobalamin riboswitch.
With a cobalamin-regulated reporter system for expression of yellow fluorescent protein, genes previously misidentified as encoding subunits of a siderophore transporter were shown to encode components of cobalamin uptake in the cyanobacterium Synechococcus sp. strain PCC 7002. This study demonstrates the importance of experimental validation of in silico predictions and provides a general scheme for in vivo verification of similar cobalamin transport systems. A putative cobalamin riboswitch was identified in Synechococcus sp. strain PCC 7002. This riboswitch acts as a potential transcriptional attenuator of the btu operon that encodes the components of the cobalamin active-transport system.
蓝藻聚球藻属菌株PCC 7002是钴胺素营养缺陷型,仅利用这种辅酶通过甲硫氨酸合酶(MetH)合成L-甲硫氨酸。聚球藻属菌株PCC 7002无法从头合成钴胺素,由于这种四吡咯分子较大,必然存在一个用于摄取钴胺素的主动运输系统。令人惊讶的是,在该生物体基因组的最初注释中未发现钴胺素运输系统。借助更精密的计算机预测工具,鉴定出一个btuB-cpdA-btuC-btuF操纵子,其编码的组分被认为是B12摄取(btu)系统所必需的。预计这些基因的表达受钴胺素核糖开关控制。通过对在有无钴胺素条件下生长的聚球藻属菌株PCC 7002的钴胺素非依赖型进行高通量RNA测序的全基因组转录谱分析,证实了钴胺素对btu操纵子的调控作用。佩雷斯等人(A. A. Pérez、Z. Liu、D. A. Rodionov、Z. Li和D. A. Bryant,《细菌学杂志》198:2743 - 2752,2016年,http://dx.doi.org/10.1128/JB.00475 - 16)在经过基因改造以实现钴胺素非依赖型生长的聚球藻属菌株PCC 7002变体中开发了一种依赖钴胺素的黄色荧光蛋白报告系统。利用该报告系统通过评估靶向突变体运输钴胺素的能力来验证btu摄取系统的组分。将btuB启动子和在预测的钴胺素核糖开关的一个关键元件中发生突变的变体对应物与yfp报告基因融合。综合数据表明,该蓝藻中的btuB-cpdA-btuF-btuC操纵子受钴胺素核糖开关转录调控。
借助用于黄色荧光蛋白表达的钴胺素调控报告系统,先前被错误鉴定为编码铁载体转运蛋白亚基的基因被证明在蓝藻聚球藻属菌株PCC 7002中编码钴胺素摄取的组分。本研究证明了对计算机预测进行实验验证的重要性,并提供了体内验证类似钴胺素运输系统的总体方案。在聚球藻属菌株PCC 7002中鉴定出一个假定的钴胺素核糖开关。该核糖开关作为btu操纵子的潜在转录衰减子,该操纵子编码钴胺素主动运输系统的组分。