Weber Thomas, Cram Jacob A, Leung Shirley W, DeVries Timothy, Deutsch Curtis
School of Oceanography, University of Washington, Seattle, WA 98195;
Department of Geography, University of California, Santa Barbara, CA 93106.
Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):8606-11. doi: 10.1073/pnas.1604414113. Epub 2016 Jul 25.
The "transfer efficiency" of sinking organic particles through the mesopelagic zone and into the deep ocean is a critical determinant of the atmosphere-ocean partition of carbon dioxide (CO2). Our ability to detect large-scale spatial variations in transfer efficiency is limited by the scarcity and uncertainties of particle flux data. Here we reconstruct deep ocean particle fluxes by diagnosing the rate of nutrient accumulation along transport pathways in a data-constrained ocean circulation model. Combined with estimates of organic matter export from the surface, these diagnosed fluxes reveal a global pattern of transfer efficiency to 1,000 m that is high (∼25%) at high latitudes and low (∼5%) in subtropical gyres, with intermediate values in the tropics. This pattern is well correlated with spatial variations in phytoplankton community structure and the export of ballast minerals, which control the size and density of sinking particles. These findings accentuate the importance of high-latitude oceans in sequestering carbon over long timescales, and highlight potential impacts on remineralization depth as phytoplankton communities respond to a warming climate.
下沉有机颗粒从中层带进入深海的“转移效率”是二氧化碳(CO₂)在大气 - 海洋间分配的关键决定因素。我们探测转移效率大规模空间变化的能力受到颗粒通量数据稀缺性和不确定性的限制。在此,我们通过在数据约束的海洋环流模型中诊断沿传输路径的营养物质积累速率来重建深海颗粒通量。结合从表层输出的有机物质估计值,这些诊断通量揭示了至1000米深度的转移效率全球模式:在高纬度地区较高(约25%),在亚热带环流中较低(约5%),在热带地区为中间值。这种模式与浮游植物群落结构和压载矿物质输出的空间变化密切相关,而浮游植物群落结构和压载矿物质输出控制着下沉颗粒的大小和密度。这些发现凸显了高纬度海洋在长时间尺度上固碳的重要性,并强调了随着浮游植物群落对气候变暖做出响应,对再矿化深度的潜在影响。