Energy Centre, Council for Scientific and Industrial Research (CSIR), P.O Box 395, Pretoria 0001, South Africa; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O Box 17011, Johannesburg 2028, South Africa.
Energy Centre, Council for Scientific and Industrial Research (CSIR), P.O Box 395, Pretoria 0001, South Africa.
Ultrason Sonochem. 2021 Aug;76:105664. doi: 10.1016/j.ultsonch.2021.105664. Epub 2021 Jul 7.
The ultrasonic process has been examined to exfoliate layered materials and upgrade their properties for a variety of applications in different media. Our previous studies have shown that the ultra-sonication treatment in water without chemicals has a positive influence on the physical and electrochemical performance of layered materials and nanoparticles. In this work, we have probed the impact of ultrasonication on the physical properties and the oxygen evolution reaction (OER) of the NiFe LDH materials under various conditions, including suspension concentration (2.5-12.5 mg mL), sonication times (3-20 min) and amplitudes (50-90%) in water, in particular, sonication times and amplitudes. We found that the concentration, amplitude and time play significant roles on the exfoliation of the NiFe LDH material. Firstly, the NiFe LDH nanosheets displayed the best OER performance under ultrasonic conditions with the concentration of 10 mg mL (50% amplitude and 15 min). Secondly, it was revealed that the exfoliation of the NiFe LDH nanosheets in a short time (<10 min) or a higher amplitudes (≥80%) has left a cutdown on the OER activity. Comprehensively, the optimum OER activity was displayed on the exfoliated NiFe LDH materials under ultrasonic condition of 60% (amplitude), 10 mg mL and 15 min. It demanded only 250 mV overpotentials to reach 10 mA cm in 1 M KOH, which was 100 mV less than the starting NiFe LDH material. It was revealed from the mechanism of sonochemistry and the OER reaction that, after exfoliation, the promoted OER performance is ascribed to the enriched Fe at the active sites, easier oxidation of Ni to Ni, and the strong electrical coupling of the Ni and Fe during the OER process. This work provides a green strategy to improve the intrinsic activity of layered materials.
超声过程已被用于剥离层状材料,并提升其在不同介质中的各种应用的性能。我们之前的研究表明,在水中进行的超声处理(无需使用化学物质)对层状材料和纳米颗粒的物理和电化学性能有积极影响。在这项工作中,我们研究了超声处理对不同条件下 NiFe LDH 材料的物理性质和析氧反应(OER)的影响,包括悬浮液浓度(2.5-12.5 mg mL)、超声时间(3-20 分钟)和振幅(50-90%),特别是超声时间和振幅。我们发现,浓度、振幅和时间对 NiFe LDH 材料的剥离起重要作用。首先,在浓度为 10 mg mL(50%振幅和 15 分钟)的超声条件下,NiFe LDH 纳米片表现出最佳的 OER 性能。其次,结果表明,NiFe LDH 纳米片在短时间(<10 分钟)或高振幅(≥80%)下的剥离会降低 OER 活性。综合来看,在 60%(振幅)、10 mg mL 和 15 分钟的超声条件下,剥离的 NiFe LDH 材料表现出最佳的 OER 活性。在 1 M KOH 中,仅需 250 mV 的过电势即可达到 10 mA cm,比起始 NiFe LDH 材料少 100 mV。通过超声化学和 OER 反应的机理可知,剥离后,OER 性能的提高归因于活性位点处富集的 Fe、更容易氧化的 Ni 到 Ni 以及 OER 过程中 Ni 和 Fe 之间的强电耦合。这项工作提供了一种提高层状材料本征活性的绿色策略。
Ultrason Sonochem. 2019-8-1
J Colloid Interface Sci. 2022-7-15
Research (Wash D C). 2020-2-19
Ultrason Sonochem. 2019-10-31
Ultrason Sonochem. 2019-8-1
Sci Rep. 2019-6-18
Ultrason Sonochem. 2019-10
Adv Sci (Weinh). 2018-5-23