Suppr超能文献

利用腔衰荡光谱技术对生物学中的碳-14 进行定量。

Quantifying Carbon-14 for Biology Using Cavity Ring-Down Spectroscopy.

机构信息

Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory , 7000 East Avenue, Livermore, California 94550, United States.

Biology and Biotechnology Division, Lawrence Livermore National Laboratory , 7000 East Avenue, Livermore, California 94550, United States.

出版信息

Anal Chem. 2016 Sep 6;88(17):8714-9. doi: 10.1021/acs.analchem.6b02054. Epub 2016 Aug 9.

Abstract

A cavity ring-down spectroscopy (CRDS) instrument was developed using mature, robust hardware for the measurement of carbon-14 in biological studies. The system was characterized using carbon-14 elevated glucose samples and returned a linear response up to 387 times contemporary carbon-14 concentrations. Carbon-14 free and contemporary carbon-14 samples with varying carbon-13 concentrations were used to assess the method detection limit of approximately one-third contemporary carbon-14 levels. Sources of inaccuracies are presented and discussed, and the capability to measure carbon-14 in biological samples is demonstrated by comparing pharmacokinetics from carbon-14 dosed guinea pigs analyzed by both CRDS and accelerator mass spectrometry. The CRDS approach presented affords easy access to powerful carbon-14 tracer techniques that can characterize complex biochemical systems.

摘要

开发了一种基于成熟、可靠硬件的腔衰荡光谱(CRDS)仪器,用于生物研究中碳-14 的测量。该系统使用碳-14 升高的葡萄糖样品进行了表征,其线性响应高达当代碳-14 浓度的 387 倍。使用无碳-14 和当代碳-14 样品以及不同碳-13 浓度的样品来评估方法检测限约为当代碳-14 水平的三分之一。本文介绍并讨论了误差的来源,并通过比较经 CRDS 和加速器质谱分析的碳-14 标记豚鼠的药代动力学,证明了该方法在测量生物样品中碳-14 的能力。所提出的 CRDS 方法为使用强大的碳-14 示踪技术来描述复杂的生化系统提供了便捷途径。

相似文献

1
Quantifying Carbon-14 for Biology Using Cavity Ring-Down Spectroscopy.
Anal Chem. 2016 Sep 6;88(17):8714-9. doi: 10.1021/acs.analchem.6b02054. Epub 2016 Aug 9.
3
Nanotracing and cavity-ring down spectroscopy: A new ultrasensitive approach in large molecule drug disposition studies.
PLoS One. 2018 Oct 17;13(10):e0205435. doi: 10.1371/journal.pone.0205435. eCollection 2018.
4
Novel use of cavity ring-down spectroscopy to investigate aquatic carbon cycling from microbial to ecosystem scales.
Environ Sci Technol. 2013 Nov 19;47(22):12938-45. doi: 10.1021/es4027776. Epub 2013 Nov 1.
5
Laser-based radiocarbon detection in the laboratory: How soon?
J Labelled Comp Radiopharm. 2019 Sep;62(11):768-775. doi: 10.1002/jlcr.3794. Epub 2019 Aug 26.
6
Discrete Sample Introduction Module for Quantitative and Isotopic Analysis of Methane and Other Gases by Cavity Ring-Down Spectroscopy.
Environ Sci Technol. 2021 Sep 7;55(17):12066-12074. doi: 10.1021/acs.est.1c01386. Epub 2021 Aug 25.
7
Liquid-phase and evanescent-wave cavity ring-down spectroscopy in analytical chemistry.
Annu Rev Anal Chem (Palo Alto Calif). 2009;2:13-35. doi: 10.1146/annurev-anchem-060908-155301.
9
Measurements of Carbon-14 With Cavity Ring-Down Spectroscopy.
Nucl Instrum Methods Phys Res B. 2015 Oct 15;361:277-280. doi: 10.1016/j.nimb.2015.05.036.
10
Diode ring-down spectroscopy without intensity modulation in an off-axis multipass cavity.
Spectrochim Acta A Mol Biomol Spectrosc. 2007 Apr;66(4-5):832-5. doi: 10.1016/j.saa.2006.11.008. Epub 2006 Nov 19.

引用本文的文献

1
Beyond Accelerator Mass Spectrometry: Recent Developments in All-Optical Measurements of Radioisotope Carbon.
ACS Omega. 2025 May 16;10(21):20984-20992. doi: 10.1021/acsomega.5c02123. eCollection 2025 Jun 3.
2
Optical C Tracing for Biological and Pharmaceutical Applications Using Two-Color Cavity Ringdown Spectroscopy.
Anal Chem. 2025 Mar 18;97(10):5473-5479. doi: 10.1021/acs.analchem.4c04874. Epub 2025 Mar 3.
3
Cavity Ring-Down Spectroscopy Analysis of Radiocarbon from Nuclear Waste Materials.
ACS Omega. 2024 Dec 2;9(50):49098-49107. doi: 10.1021/acsomega.4c04424. eCollection 2024 Dec 17.
4
Mid-infrared trace detection with parts-per-quadrillion quantitation accuracy: Expanding frontiers of radiocarbon sensing.
Proc Natl Acad Sci U S A. 2024 Apr 9;121(15):e2314441121. doi: 10.1073/pnas.2314441121. Epub 2024 Mar 21.
5
Mid-infrared supermirrors with finesse exceeding 400 000.
Nat Commun. 2023 Dec 6;14(1):7846. doi: 10.1038/s41467-023-43367-z.
6
Cantilever-enhanced photoacoustic measurement of HTO in water vapor.
Photoacoustics. 2022 Dec 30;29:100443. doi: 10.1016/j.pacs.2022.100443. eCollection 2023 Feb.
8
Room-Temperature Optical Detection of CO below the Natural Abundance with Two-Color Cavity Ring-Down Spectroscopy.
ACS Sens. 2022 Nov 25;7(11):3258-3264. doi: 10.1021/acssensors.2c01253. Epub 2022 Oct 31.
9
Precise radiocarbon determination in radioactive waste by a laser-based spectroscopic technique.
Proc Natl Acad Sci U S A. 2022 Jul 12;119(28):e2122122119. doi: 10.1073/pnas.2122122119. Epub 2022 Jul 7.
10
On-Line Monitoring of Radiocarbon Emissions in a Nuclear Facility with Cavity Ring-Down Spectroscopy.
Anal Chem. 2021 Dec 7;93(48):16096-16104. doi: 10.1021/acs.analchem.1c03814. Epub 2021 Nov 23.

本文引用的文献

1
Measurements of Carbon-14 With Cavity Ring-Down Spectroscopy.
Nucl Instrum Methods Phys Res B. 2015 Oct 15;361:277-280. doi: 10.1016/j.nimb.2015.05.036.
3
Model-Based, Closed-Loop Control of PZT Creep for Cavity Ring-Down Spectroscopy.
Meas Sci Technol. 2014 Sep 1;25(9). doi: 10.1088/0957-0233/25/9/095201.
4
Quantifying exploratory low dose compounds in humans with AMS.
Adv Drug Deliv Rev. 2011 Jun 19;63(7):518-31. doi: 10.1016/j.addr.2010.10.009. Epub 2010 Oct 31.
5
Long-term stability in continuous wave cavity ringdown spectroscopy experiments.
Appl Opt. 2010 Mar 10;49(8):1378-87. doi: 10.1364/AO.49.001378.
6
Technical matters: method, knowledge and infrastructure in twentieth-century life science.
Nat Methods. 2009 Oct;6(10):701-05. doi: 10.1038/nmeth1009-701.
7
Quantifying noise in optical tweezers by allan variance.
Opt Express. 2009 Jul 20;17(15):13255-69. doi: 10.1364/oe.17.013255.
8
A minute dose of 14C-{beta}-carotene is absorbed and converted to retinoids in humans.
J Nutr. 2009 Aug;139(8):1480-6. doi: 10.3945/jn.109.105114. Epub 2009 Jun 17.
9
Intracavity optogalvanic spectroscopy. An analytical technique for 14C analysis with subattomole sensitivity.
Anal Chem. 2008 Jul 1;80(13):4820-4. doi: 10.1021/ac800751y. Epub 2008 Jun 6.
10
Unexplored pharmacokinetic opportunities with microdosing in oncology.
Clin Cancer Res. 2007 Jul 15;13(14):4033-4. doi: 10.1158/1078-0432.CCR-07-0540.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验