Winkler G, Perner L W, Truong G-W, Zhao G, Bachmann D, Mayer A S, Fellinger J, Follman D, Heu P, Deutsch C, Bailey D M, Peelaers H, Puchegger S, Fleisher A J, Cole G D, Heckl O H
Christian Doppler Laboratory for Mid-IR Spectroscopy and Semiconductor Optics, Faculty Center for Nano Structure Research, Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
Crystalline Mirror Solutions, Santa Barbara, CA and Vienna, Austria.
Optica. 2021;8(5). doi: 10.1364/OPTICA.405938.
We present high-reflectivity substrate-transferred single-crystal GaAs/AlGaAs interference coatings at a center wavelength of 4.54 μm with record-low excess optical loss below 10 parts per million. These high-performance mirrors are realized via a novel microfabrication process that differs significantly from the production of amorphous multilayers generated via physical vapor deposition processes. This new process enables reduced scatter loss due to the low surface and interfacial roughness, while low background doping in epitaxial growth ensures strongly reduced absorption. We report on a suite of optical measurements, including cavity ring-down, transmittance spectroscopy, and direct absorption tests to reveal the optical losses for a set of prototype mirrors. In the course of these measurements, we observe a unique polarization-orientation-dependent loss mechanism which we attribute to elastic anisotropy of these strained epitaxial multilayers. A future increase in layer count and a corresponding reduction of transmittance will enable optical resonators with a finesse in excess of 100 000 in the mid-infrared spectral region, allowing for advances in high resolution spectroscopy, narrow-linewidth laser stabilization, and ultrasensitive measurements of various light-matter interactions.
我们展示了中心波长为4.54μm的高反射率衬底转移单晶GaAs/AlGaAs干涉涂层,其具有创纪录的低过剩光学损耗,低于百万分之十。这些高性能反射镜是通过一种新颖的微制造工艺实现的,该工艺与通过物理气相沉积工艺生产非晶多层膜有显著不同。这种新工艺由于低表面和界面粗糙度而降低了散射损耗,同时外延生长中的低背景掺杂确保了吸收的大幅降低。我们报告了一系列光学测量,包括腔衰荡、透射光谱和直接吸收测试,以揭示一组原型反射镜的光学损耗。在这些测量过程中,我们观察到一种独特的与偏振取向相关的损耗机制,我们将其归因于这些应变外延多层膜的弹性各向异性。未来层数的增加和相应的透射率降低将使中红外光谱区域的光学谐振器的精细度超过100000,从而推动高分辨率光谱学、窄线宽激光稳定以及各种光与物质相互作用的超灵敏测量取得进展。