Suppr超能文献

基于磁共振成像的脑正电子发射断层显像衰减校正中采用全自动可重复水平集分割方法的单次自旋回波磁共振采集

Single STE-MR Acquisition in MR-Based Attenuation Correction of Brain PET Imaging Employing a Fully Automated and Reproducible Level-Set Segmentation Approach.

作者信息

Fathi Kazerooni Anahita, Ay Mohammad Reza, Arfaie Saman, Khateri Parisa, Saligheh Rad Hamidreza

机构信息

Quantitative MR Imaging and Spectroscopy Group (QMISG), Research Center for Molecular and Cellular Imaging (RCMCI), Tehran University of Medical Sciences, Tehran, Iran.

Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran.

出版信息

Mol Imaging Biol. 2017 Feb;19(1):143-152. doi: 10.1007/s11307-016-0990-5.

Abstract

PURPOSE

The aim of this study is to introduce a fully automatic and reproducible short echo-time (STE) magnetic resonance imaging (MRI) segmentation approach for MR-based attenuation correction of positron emission tomography (PET) data in head region.

PROCEDURES

Single STE-MR imaging was followed by generating attenuation correction maps (μ-maps) through exploiting an automated clustering-based level-set segmentation approach to classify head images into three regions of cortical bone, air, and soft tissue. Quantitative assessment was performed by comparing the STE-derived region classes with the corresponding regions extracted from X-ray computed tomography (CT) images.

RESULTS

The proposed segmentation method returned accuracy and specificity values of over 90 % for cortical bone, air, and soft tissue regions. The MR- and CT-derived μ-maps were compared by quantitative histogram analysis.

CONCLUSIONS

The results suggest that the proposed automated segmentation approach can reliably discriminate bony structures from the proximal air and soft tissue in single STE-MR images, which is suitable for generating MR-based μ-maps for attenuation correction of PET data.

摘要

目的

本研究旨在介绍一种全自动且可重复的短回波时间(STE)磁共振成像(MRI)分割方法,用于头部区域基于磁共振的正电子发射断层扫描(PET)数据衰减校正。

过程

先进行单次STE-MR成像,然后通过基于自动聚类的水平集分割方法生成衰减校正图(μ图),将头部图像分为皮质骨、空气和软组织三个区域。通过将STE衍生的区域类别与从X射线计算机断层扫描(CT)图像中提取的相应区域进行比较来进行定量评估。

结果

所提出的分割方法对皮质骨区域、空气区域和软组织区域的准确率和特异性值均超过90%。通过定量直方图分析比较了磁共振和CT衍生的μ图。

结论

结果表明,所提出的自动分割方法能够可靠地从单次STE-MR图像中的近端空气和软组织中区分出骨结构,适用于生成基于磁共振的μ图以进行PET数据的衰减校正。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验