Suppr超能文献

基于磁共振图像的脑 PET 衰减校正:机器学习方法在分割中的文献综述。

MR Image-Based Attenuation Correction of Brain PET Imaging: Review of Literature on Machine Learning Approaches for Segmentation.

机构信息

Department of Electronic and Computer Engineering, Brunel University London, Uxbridge, UK.

Department of Electrical and Computer Engineering, Texas A & M University at Qatar, Doha, Qatar.

出版信息

J Digit Imaging. 2020 Oct;33(5):1224-1241. doi: 10.1007/s10278-020-00361-x.

Abstract

Recent emerging hybrid technology of positron emission tomography/magnetic resonance (PET/MR) imaging has generated a great need for an accurate MR image-based PET attenuation correction. MR image segmentation, as a robust and simple method for PET attenuation correction, has been clinically adopted in commercial PET/MR scanners. The general approach in this method is to segment the MR image into different tissue types, each assigned an attenuation constant as in an X-ray CT image. Machine learning techniques such as clustering, classification and deep networks are extensively used for brain MR image segmentation. However, only limited work has been reported on using deep learning in brain PET attenuation correction. In addition, there is a lack of clinical evaluation of machine learning methods in this application. The aim of this review is to study the use of machine learning methods for MR image segmentation and its application in attenuation correction for PET brain imaging. Furthermore, challenges and future opportunities in MR image-based PET attenuation correction are discussed.

摘要

最近出现的正电子发射断层扫描/磁共振(PET/MR)成像混合技术对基于磁共振图像的准确 PET 衰减校正提出了巨大的需求。磁共振图像分割作为一种用于 PET 衰减校正的强大而简单的方法,已经在商业 PET/MR 扫描仪中得到临床应用。该方法的一般方法是将磁共振图像分割成不同的组织类型,每个组织类型都被赋予一个衰减常数,就像 X 射线 CT 图像一样。聚类、分类和深度网络等机器学习技术被广泛应用于脑磁共振图像分割。然而,只有有限的工作报道了在脑 PET 衰减校正中使用深度学习。此外,在该应用中,机器学习方法的临床评估也很缺乏。本综述的目的是研究机器学习方法在磁共振图像分割及其在脑 PET 成像衰减校正中的应用。此外,还讨论了基于磁共振图像的 PET 衰减校正中存在的挑战和未来机遇。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8e4/7573060/d2938dd9b771/10278_2020_361_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验