Suppr超能文献

一种用于苏木精-伊红染色图像中腺体分割的播种-搜索-集成方法。

A seeding-searching-ensemble method for gland segmentation in H&E-stained images.

作者信息

Zhang Yizhe, Yang Lin, MacKenzie John D, Ramachandran Rageshree, Chen Danny Z

机构信息

Department of Computer Science and Engineering, University of Notre Dame, IN, 46556, USA.

Department of Radiology & Biomedical Imaging, University of California, San Francisco, 94143, CA, USA.

出版信息

BMC Med Inform Decis Mak. 2016 Jul 21;16 Suppl 2(Suppl 2):80. doi: 10.1186/s12911-016-0312-5.

Abstract

BACKGROUND

Glands are vital structures found throughout the human body and their structure and function are affected by many diseases. The ability to segment and detect glands among other types of tissues is important for the study of normal and disease processes and helps their analysis and visualization by pathologists in microscopic detail.

METHODS

In this paper, we develop a new approach for segmenting and detecting intestinal glands in H&E-stained histology images, which utilizes a set of advanced image processing techniques: graph search, ensemble, feature extraction, and classification. Our method is computationally fast, preserves gland boundaries robustly and detects glands accurately.

RESULTS

We tested the performance of our gland detection and segmentation method by analyzing a dataset of over 1700 glands in digitized high resolution clinical histology images obtained from normal and diseased human intestines. The experimental results show that our method outperforms considerably the state-of-the-art methods for gland segmentation and detection.

CONCLUSIONS

Our method can produce high-quality segmentation and detection of non-overlapped glands that obey the natural property of glands in histology tissue images. With accurately detected and segmented glands, quantitative measurement and analysis can be developed for further studies of glands and computer-aided diagnosis.

摘要

背景

腺体是遍布人体的重要结构,其结构和功能会受到多种疾病的影响。在其他类型组织中对腺体进行分割和检测的能力,对于研究正常和疾病过程非常重要,有助于病理学家在微观层面进行分析和可视化。

方法

在本文中,我们开发了一种新方法,用于在苏木精-伊红(H&E)染色的组织学图像中分割和检测肠腺,该方法利用了一组先进的图像处理技术:图搜索、集成、特征提取和分类。我们的方法计算速度快,能稳健地保留腺边界并准确检测腺体。

结果

我们通过分析从正常和患病人类肠道获得的数字化高分辨率临床组织学图像中的1700多个腺体数据集,测试了我们的腺体检测和分割方法的性能。实验结果表明,我们的方法在腺体分割和检测方面明显优于现有最先进的方法。

结论

我们的方法可以对非重叠腺体进行高质量的分割和检测,这些腺体符合组织学组织图像中腺体的自然特性。通过准确检测和分割腺体,可以开展定量测量和分析,以进一步研究腺体和计算机辅助诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ea1/4965734/c16b98b07ca9/12911_2016_312_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验