Suppr超能文献

一种用于前列腺组织病理学图像中腺体分割的混合深度学习方法。

A hybrid deep learning approach for gland segmentation in prostate histopathological images.

机构信息

Politecnico di Torino, PoliTo(BIO)Med Lab, Biolab, Department of Electronics and Telecommunications, Corso Duca degli Abruzzi 24, Turin, 10129, Italy.

San Lazzaro Hospital, Department of Pathology, Via Petrino Belli 26, Alba, 12051, Italy.

出版信息

Artif Intell Med. 2021 May;115:102076. doi: 10.1016/j.artmed.2021.102076. Epub 2021 Apr 16.

Abstract

BACKGROUND

In digital pathology, the morphology and architecture of prostate glands have been routinely adopted by pathologists to evaluate the presence of cancer tissue. The manual annotations are operator-dependent, error-prone and time-consuming. The automated segmentation of prostate glands can be very challenging too due to large appearance variation and serious degeneration of these histological structures.

METHOD

A new image segmentation method, called RINGS (Rapid IdentificatioN of Glandural Structures), is presented to segment prostate glands in histopathological images. We designed a novel glands segmentation strategy using a multi-channel algorithm that exploits and fuses both traditional and deep learning techniques. Specifically, the proposed approach employs a hybrid segmentation strategy based on stroma detection to accurately detect and delineate the prostate glands contours.

RESULTS

Automated results are compared with manual annotations and seven state-of-the-art techniques designed for glands segmentation. Being based on stroma segmentation, no performance degradation is observed when segmenting healthy or pathological structures. Our method is able to delineate the prostate gland of the unknown histopathological image with a dice score of 90.16 % and outperforms all the compared state-of-the-art methods.

CONCLUSIONS

To the best of our knowledge, the RINGS algorithm is the first fully automated method capable of maintaining a high sensitivity even in the presence of severe glandular degeneration. The proposed method will help to detect the prostate glands accurately and assist the pathologists to make accurate diagnosis and treatment. The developed model can be used to support prostate cancer diagnosis in polyclinics and community care centres.

摘要

背景

在数字病理学中,前列腺的形态和结构已被病理学家常规用于评估癌组织的存在。手动注释依赖于操作者,容易出错且耗时。由于这些组织结构的外观变化大且严重退化,前列腺的自动分割也极具挑战性。

方法

提出了一种新的图像分割方法,称为 RINGS(快速识别腺体结构),用于分割组织病理学图像中的前列腺。我们设计了一种新颖的腺体分割策略,使用多通道算法利用和融合传统和深度学习技术。具体来说,所提出的方法采用基于基质检测的混合分割策略,以准确检测和描绘前列腺腺体轮廓。

结果

将自动结果与手动注释和专门用于腺体分割的七种最先进技术进行比较。由于基于基质分割,因此在分割健康或病理结构时不会出现性能下降。我们的方法能够以 90.16%的骰子分数描绘未知组织病理学图像的前列腺,并优于所有比较的最先进方法。

结论

据我们所知,RINGS 算法是第一个能够保持高灵敏度的全自动方法,即使在严重的腺体退化的情况下也是如此。该方法将有助于准确检测前列腺,帮助病理学家进行准确的诊断和治疗。开发的模型可用于支持在综合诊所和社区护理中心进行前列腺癌诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验