Hernandez-Agreda Alejandra, Leggat William, Bongaerts Pim, Ainsworth Tracy D
Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia The College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia
Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia The College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia.
mBio. 2016 Jul 26;7(4):e00560-16. doi: 10.1128/mBio.00560-16.
For ecosystems vulnerable to environmental change, understanding the spatiotemporal stability of functionally crucial symbioses is fundamental to determining the mechanisms by which these ecosystems may persist. The coral Pachyseris speciosa is a successful environmental generalist that succeeds in diverse reef habitats. The generalist nature of this coral suggests it may have the capacity to form functionally significant microbial partnerships to facilitate access to a range of nutritional sources within different habitats. Here, we propose that coral is a metaorganism hosting three functionally distinct microbial interactions: a ubiquitous core microbiome of very few symbiotic host-selected bacteria, a microbiome of spatially and/or regionally explicit core microbes filling functional niches (<100 phylotypes), and a highly variable bacterial community that is responsive to biotic and abiotic processes across spatial and temporal scales (>100,000 phylotypes). We find that this coral hosts upwards of 170,000 distinct phylotypes and provide evidence for the persistence of a select group of bacteria in corals across environmental habitats of the Great Barrier Reef and Coral Sea. We further show that a higher number of bacteria are consistently associated with corals on mesophotic reefs than on shallow reefs. An increase in microbial diversity with depth suggests reliance by this coral on bacteria for nutrient acquisition on reefs exposed to nutrient upwelling. Understanding the complex microbial communities of host organisms across broad biotic and abiotic environments as functionally distinct microbiomes can provide insight into those interactions that are ubiquitous niche symbioses and those that provide competitive advantage within the hosts' environment.
Corals have been proposed as the most diverse microbial biosphere. The high variability of microbial communities has hampered the identification of bacteria playing key functional roles that contribute to coral survival. Exploring the bacterial community in a coral with a broad environmental distribution, we found a group of bacteria present across all environments and a higher number of bacteria consistently associated with mesophotic corals (60 to 80 m). These results provide evidence of consistent and ubiquitous coral-bacterial partnerships and support the consideration of corals as metaorganisms hosting three functionally distinct microbiomes: a ubiquitous core microbiome, a microbiome filling functional niches, and a highly variable bacterial community.
对于易受环境变化影响的生态系统而言,了解功能关键共生关系的时空稳定性是确定这些生态系统可能持续存在机制的基础。珊瑚物种厚丝珊瑚是一种成功的环境通才,能在多样的珊瑚礁栖息地中生存。这种珊瑚的通才特性表明它可能有能力形成功能上重要的微生物伙伴关系,以促进在不同栖息地获取一系列营养来源。在此,我们提出珊瑚是一种超生物体,拥有三种功能不同的微生物相互作用:由极少数共生宿主选择的细菌组成的普遍存在的核心微生物群、填充功能生态位的空间和/或区域明确的核心微生物组成的微生物群(<100个系统发育型),以及对时空尺度上的生物和非生物过程有反应的高度可变细菌群落(>100,000个系统发育型)。我们发现这种珊瑚拥有超过170,000个不同的系统发育型,并为一组特定细菌在大堡礁和珊瑚海的环境栖息地中的珊瑚中持续存在提供了证据。我们进一步表明,与浅礁相比,中光层珊瑚礁上与珊瑚持续相关的细菌数量更多。随着深度增加微生物多样性增加,这表明这种珊瑚在受到营养上升流影响的珊瑚礁上依赖细菌获取营养。将宿主生物体在广泛的生物和非生物环境中的复杂微生物群落理解为功能不同的微生物群,可以深入了解那些普遍存在的生态位共生相互作用以及那些在宿主环境中提供竞争优势的相互作用。
珊瑚被认为是最多样化的微生物生物圈。微生物群落的高度变异性阻碍了对在珊瑚生存中起关键功能作用的细菌的识别。通过探索一种具有广泛环境分布的珊瑚中的细菌群落,我们发现了一组在所有环境中都存在的细菌,并且与中光层珊瑚(60至80米)持续相关的细菌数量更多。这些结果为一致且普遍存在的珊瑚 - 细菌伙伴关系提供了证据,并支持将珊瑚视为拥有三种功能不同微生物群的超生物体:普遍存在的核心微生物群、填充功能生态位的微生物群和高度可变的细菌群落。