Camilloni Carlo, Bonetti Daniela, Morrone Angela, Giri Rajanish, Dobson Christopher M, Brunori Maurizio, Gianni Stefano, Vendruscolo Michele
Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
Istituto Pasteur - Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" Università di Roma "La Sapienza", 00185 Rome, Italy.
Sci Rep. 2016 Jul 27;6:28285. doi: 10.1038/srep28285.
The hydrophobic effect is a major driving force in protein folding. A complete understanding of this effect requires the description of the conformational states of water and protein molecules at different temperatures. Towards this goal, we characterise the cold and hot denatured states of a protein by modelling NMR chemical shifts using restrained molecular dynamics simulations. A detailed analysis of the resulting structures reveals that water molecules in the bulk and at the protein interface form on average the same number of hydrogen bonds. Thus, even if proteins are 'large' particles (in terms of the hydrophobic effect, i.e. larger than 1 nm), because of the presence of complex surface patterns of polar and non-polar residues their behaviour can be compared to that of 'small' particles (i.e. smaller than 1 nm). We thus find that the hot denatured state is more compact and richer in secondary structure than the cold denatured state, since water at lower temperatures can form more hydrogen bonds than at high temperatures. Then, using Φ-value analysis we show that the structural differences between the hot and cold denatured states result in two alternative folding mechanisms. These findings thus illustrate how the analysis of water-protein hydrogen bonds can reveal the molecular origins of protein behaviours associated with the hydrophobic effect.
疏水作用是蛋白质折叠的主要驱动力。要全面理解这种作用,需要描述不同温度下水分子和蛋白质分子的构象状态。为实现这一目标,我们通过使用受限分子动力学模拟对核磁共振化学位移进行建模,来表征一种蛋白质的冷变性态和热变性态。对所得结构的详细分析表明,本体中的水分子和蛋白质界面处的水分子平均形成的氢键数量相同。因此,即使蛋白质是“大”粒子(就疏水作用而言,即大于1纳米),由于存在极性和非极性残基的复杂表面模式,其行为也可与“小”粒子(即小于1纳米)的行为相比较。我们因此发现,热变性态比冷变性态更紧凑,二级结构更丰富,因为低温下的水比高温下能形成更多的氢键。然后,通过Φ值分析我们表明,热变性态和冷变性态之间的结构差异导致了两种不同的折叠机制。这些发现因此说明了对水 - 蛋白质氢键的分析如何能够揭示与疏水作用相关的蛋白质行为的分子起源。