Suppr超能文献

对健康学校的探索:学校及其学生的多层次潜在类别分析

The search for healthy schools: A multilevel latent class analysis of schools and their students.

作者信息

Allison Kenneth R, Adlaf Edward M, Irving Hyacinth M, Schoueri-Mychasiw Nour, Rehm Jurgen

机构信息

Dalla Lana School of Public Health, University of Toronto, 155 College Street, 6 Floor, Toronto, Ontario M5T 3M7, Canada.

Dalla Lana School of Public Health, University of Toronto, 155 College Street, 6 Floor, Toronto, Ontario M5T 3M7, Canada; Social and Epidemiological Research Department, Centre for Addiction and Mental Health, 33 Russell Street, Toronto, Ontario M5S 2S1, Canada.

出版信息

Prev Med Rep. 2016 Jul 2;4:331-7. doi: 10.1016/j.pmedr.2016.06.016. eCollection 2016 Dec.

Abstract

The objective of this study was to establish and investigate a taxonomy of school health among high school students in Ontario, Canada. Data analyzed were based on 3358 9th-12th graders attending 103 high schools who participated in the 2011 Ontario Student Drug Use and Health Survey. Based on 10 health-related indicators, multilevel latent class analysis was used to extract 4 student-level latent classes and 3 school-level latent classes. Unhealthy schools (19% of schools) had the lowest proportion of healthy students (39%) and the highest proportion of substance-using (31%) and unhealthy (18%) students. Healthy schools (66%) contained the highest proportion of healthy students (56%) and smaller proportions of substance-using (22%) and unhealthy students (8%). Distressed schools (15%) were similar to healthy schools in terms of the proportions of healthy and unhealthy students. Distressed schools, however, were characterized by having the largest proportion of distressed students (35%) and the lowest proportion of substance-using students (4%). Meaningful categories of schools with respect to healthy environments can be identified and these categories could be used for focusing interventions and evaluating school health programs.

摘要

本研究的目的是建立并调查加拿大安大略省高中生的学校健康分类法。所分析的数据基于参与2011年安大略省学生药物使用与健康调查的103所高中的3358名9至12年级学生。基于10项与健康相关的指标,采用多水平潜在类别分析提取了4个学生水平的潜在类别和3个学校水平的潜在类别。不健康学校(占学校总数的19%)中健康学生的比例最低(39%),使用药物的学生比例最高(31%),不健康学生的比例也最高(18%)。健康学校(占66%)中健康学生的比例最高(56%),使用药物的学生比例(22%)和不健康学生的比例(8%)较小。问题学校(占15%)在健康和不健康学生的比例方面与健康学校相似。然而,问题学校的特点是问题学生的比例最大(35%),使用药物的学生比例最低(4%)。可以确定在健康环境方面有意义的学校类别,这些类别可用于集中干预和评估学校健康项目。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ea6/4957574/b74e84ccbade/gr1.jpg

相似文献

1
The search for healthy schools: A multilevel latent class analysis of schools and their students.
Prev Med Rep. 2016 Jul 2;4:331-7. doi: 10.1016/j.pmedr.2016.06.016. eCollection 2016 Dec.
2
Identifying patterns of alcohol use among secondary school students in Canada: A multilevel latent class analysis.
Addict Behav. 2020 Jan;100:106120. doi: 10.1016/j.addbeh.2019.106120. Epub 2019 Sep 5.
3
Early substance use and the school environment: A multilevel latent class analysis.
J Can Acad Child Adolesc Psychiatry. 2024 Mar;33(1):33-56. Epub 2024 Mar 1.
4
Multilevel Latent Class Profile Analysis: An Application to Stage-Sequential Patterns of Alcohol Use in a Sample of Canadian Youth.
Eval Health Prof. 2021 Mar;44(1):50-60. doi: 10.1177/0163278721989547. Epub 2021 Jan 29.
5
Latent profile analysis of sixth graders based on teacher ratings: Association with school dropout.
Sch Psychol Q. 2015 Dec;30(4):577-592. doi: 10.1037/spq0000107. Epub 2014 Dec 22.
6
How school climate relates to chronic absence: A multi-level latent profile analysis.
J Sch Psychol. 2017 Apr;61:89-102. doi: 10.1016/j.jsp.2016.10.001. Epub 2016 Nov 23.

引用本文的文献

1
Comparing competing characterizations suggests there might be more than one type of interest.
Sci Rep. 2024 Aug 28;14(1):19949. doi: 10.1038/s41598-024-70751-6.
2
Bringing them back: using latent class analysis to re-engage college stop-outs.
Front Psychol. 2024 Jan 29;15:1297464. doi: 10.3389/fpsyg.2024.1297464. eCollection 2024.
3
Individual and Contextual Characteristics Associated With Alcohol Use Among Brazilian Adolescents.
Int J Public Health. 2022 Jun 2;67:1604397. doi: 10.3389/ijph.2022.1604397. eCollection 2022.
4
Latent classes associated with the intention to use a symptom checker for self-triage.
PLoS One. 2021 Nov 3;16(11):e0259547. doi: 10.1371/journal.pone.0259547. eCollection 2021.

本文引用的文献

1
The WHO Health Promoting School framework for improving the health and well-being of students and their academic achievement.
Cochrane Database Syst Rev. 2014 Apr 16;2014(4):CD008958. doi: 10.1002/14651858.CD008958.pub2.
2
Lifestyle Habits: Diet, physical activity and sleep duration among Omani adolescents.
Sultan Qaboos Univ Med J. 2013 Nov;13(4):510-9. doi: 10.12816/0003309. Epub 2013 Nov 8.
3
The relationship between parental depressive symptoms, family type, and adolescent functioning.
PLoS One. 2013 Nov 18;8(11):e80699. doi: 10.1371/journal.pone.0080699. eCollection 2013.
4
Power differentials in bullying: individuals in a community context.
J Interpers Violence. 2014 Mar;29(5):846-65. doi: 10.1177/0886260513505708. Epub 2013 Nov 6.
5
School effects on risk of non-fatal suicidal behaviour: a national multilevel cohort study.
Soc Psychiatry Psychiatr Epidemiol. 2014 Apr;49(4):609-18. doi: 10.1007/s00127-013-0782-z. Epub 2013 Oct 26.
6
Predictors of cigarette use amongst Pacific youth in New Zealand.
Harm Reduct J. 2013 Oct 17;10:25. doi: 10.1186/1477-7517-10-25.
7
Trends in physical activity, sedentary behavior, diet, and BMI among US adolescents, 2001-2009.
Pediatrics. 2013 Oct;132(4):606-14. doi: 10.1542/peds.2013-1488. Epub 2013 Sep 16.
8
Adolescent substance use and peer use: a multilevel analysis of cross-sectional population data.
Subst Abuse Treat Prev Policy. 2013 Jul 31;8:27. doi: 10.1186/1747-597X-8-27.
9
Prevalence and patterns of polysubstance use in a nationally representative sample of 10th graders in the United States.
J Adolesc Health. 2013 Jun;52(6):716-23. doi: 10.1016/j.jadohealth.2012.12.006. Epub 2013 Feb 25.
10
School-based physical activity programs for promoting physical activity and fitness in children and adolescents aged 6 to 18.
Cochrane Database Syst Rev. 2013 Feb 28;2013(2):CD007651. doi: 10.1002/14651858.CD007651.pub2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验