Suppr超能文献

利用桉树种籽活性炭去除水/废水中的有毒锌:非线性回归分析

Removal of toxic zinc from water/wastewater using eucalyptus seeds activated carbon: non-linear regression analysis.

作者信息

Senthil Kumar Ponnusamy, Saravanan Anbalagan, Anish Kumar Kodyingil, Yashwanth Ramesh, Visvesh Sridharan

机构信息

Department of Chemical Engineering, SSN College of Engineering, Chennai - 603110, India.

出版信息

IET Nanobiotechnol. 2016 Aug;10(4):244-53. doi: 10.1049/iet-nbt.2015.0087.

Abstract

In the present study, a novel activated carbon was prepared from low-cost eucalyptus seeds, which was utilised for the effectively removal of toxic zinc from the water/wastewater. The prepared adsorbent was studied by Fourier transform infrared spectroscopy and scanning electron microscopic characterisation studies. Adsorption process was experimentally performed for optimising the influencing factors such as adsorbent dosage, solution pH, contact time, initial zinc concentration, and temperature for the maximum removal of zinc from aqueous solution. Adsorption isotherm of zinc removal was ensued Freundlich model, and the kinetic model ensued pseudo-second order model. Langmuir monolayer adsorption capacity of the adsorbent for zinc removal was evaluated as 80.37 mg/g. The results of the thermodynamic studies suggested that the adsorption process was exothermic, thermodynamically feasible and impulsive process. Finally, a batch adsorber was planned to remove zinc from known volume and known concentration of wastewater using best obeyed model such as Freundlich. The experimental details showed the newly prepared material can be effectively utilised as a cheap material for the adsorption of toxic metal ions from the contaminated water.

摘要

在本研究中,一种新型活性炭由低成本的桉树种籽制备而成,用于有效去除水/废水中的有毒锌。通过傅里叶变换红外光谱和扫描电子显微镜表征研究对制备的吸附剂进行了研究。通过实验进行吸附过程,以优化影响因素,如吸附剂用量、溶液pH值、接触时间、初始锌浓度和温度,以实现从水溶液中最大程度去除锌。锌去除的吸附等温线遵循弗伦德里希模型,动力学模型遵循准二级模型。该吸附剂对锌去除的朗缪尔单层吸附容量评估为80.37 mg/g。热力学研究结果表明,吸附过程是放热的、热力学可行的且是自发过程。最后,计划使用弗伦德里希等最符合的模型,从已知体积和已知浓度的废水中去除锌的间歇式吸附器。实验细节表明,新制备的材料可有效用作从受污染水中吸附有毒金属离子的廉价材料。

相似文献

2
Removal of lead (II) ions from aqueous solutions onto activated carbon derived from waste biomass.
ScientificWorldJournal. 2013 Jun 18;2013:146092. doi: 10.1155/2013/146092. Print 2013.
7
Biomass based activated carbon obtained from sludge and sugarcane bagasse for removing lead ion from wastewater.
Bioresour Technol. 2015 Sep;192:611-7. doi: 10.1016/j.biortech.2015.06.006. Epub 2015 Jun 9.
8
Removal and recovery of Ni and Zn from aqueous solution using activated carbon from Hevea brasiliensis: batch and column studies.
Colloids Surf B Biointerfaces. 2010 Jul 1;78(2):291-302. doi: 10.1016/j.colsurfb.2010.03.014. Epub 2010 Mar 25.
9
Date pits activated carbon for divalent lead ions removal.
J Biosci Bioeng. 2019 Jul;128(1):88-97. doi: 10.1016/j.jbiosc.2018.12.011. Epub 2019 Jan 22.
10
Kinetic, equilibrium, and thermodynamic studies on the adsorption of ciprofloxacin by activated carbon produced from Jerivá (Syagrus romanzoffiana).
Environ Sci Pollut Res Int. 2019 Feb;26(5):4690-4702. doi: 10.1007/s11356-018-3954-2. Epub 2018 Dec 18.

本文引用的文献

1
Superior adsorption capacity of g-C₃N₄ for heavy metal ions from aqueous solutions.
J Colloid Interface Sci. 2015 Oct 15;456:7-14. doi: 10.1016/j.jcis.2015.06.004. Epub 2015 Jun 10.
3
Removal of heavy metal ions from wastewaters: a review.
J Environ Manage. 2011 Mar;92(3):407-18. doi: 10.1016/j.jenvman.2010.11.011. Epub 2010 Dec 8.
4
The exchange adsorption of ions from aqueous solutions by organic zeolites; kinetics.
J Am Chem Soc. 1947 Nov;69(11):2836-48. doi: 10.1021/ja01203a066.
5
Biosorption of copper(II) by immobilizing Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles from aqueous solution.
J Hazard Mater. 2010 May 15;177(1-3):676-82. doi: 10.1016/j.jhazmat.2009.12.084. Epub 2009 Dec 24.
6
Biosorption of copper(II) and cadmium(II) from aqueous solutions by free and immobilized biomass of Aspergillus niger.
Bioresour Technol. 2010 Mar;101(6):1727-31. doi: 10.1016/j.biortech.2009.10.012. Epub 2009 Nov 10.
7
Chitosan and chemically modified chitosan beads for acid dyes sorption.
J Environ Sci (China). 2009;21(3):296-302. doi: 10.1016/s1001-0742(08)62267-6.
8
Heavy metal adsorbents prepared from the modification of cellulose: a review.
Bioresour Technol. 2008 Oct;99(15):6709-24. doi: 10.1016/j.biortech.2008.01.036. Epub 2008 Mar 10.
9
Novel biofiltration methods for the treatment of heavy metals from industrial wastewater.
J Hazard Mater. 2008 Feb 28;151(1):1-8. doi: 10.1016/j.jhazmat.2007.09.101. Epub 2007 Sep 29.
10
Adsorption of metal ions on lignin.
J Hazard Mater. 2008 Feb 28;151(1):134-42. doi: 10.1016/j.jhazmat.2007.05.065. Epub 2007 May 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验