Suppr超能文献

Comparative anticholinergic properties of thioridazine, mesoridazine and sulforidazine.

作者信息

Niedzwiecki D M, Cubeddu L X, Mailman R B

机构信息

Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill.

出版信息

J Pharmacol Exp Ther. 1989 Jul;250(1):126-33.

PMID:2746492
Abstract

The anticholinergic properties of thioridazine (THD) and its metabolites mesoridazine (MES) and sulforidazine (SUL) were compared to the antimuscarinics atropine and quinuclidinylbenzilate (QNB). THD, MES and SUL were virtually inactive in antagonizing the carbachol-induced inhibition of evoked ACh release from perfused rabbit striatal slices. This lack of effect was seen even when dopamine influences were abolished by treatment with reserpine and alpha-methyl-p-tyrosine. The lack of functional anticholinergic potency contrasted with the affinity of THD for muscarinic receptors measured as competition for [3H]QNB binding sites in striatal homogenates (Ki values: atropine, 2.7 nM; THD 14 nM; SUL, 66 nM; and MES, 90 nM). Both atropine and QNB blocked carbachol-induced inhibition of ACh release in a dose-dependent manner (IC50 values vs. 3 microM carbachol: 0.5 nM for QNB; 1.25 nM for atropine). THD, only 5 times less potent than atropine in competing for [3H]QNB binding sites, was inactive in antagonizing carbachol-induced ACh release. At very high concentrations (3-30 microM), THD, MES and SUL did enhance dopamine efflux and inhibit ACh release. In summary, the lack of effect of THD on release modulatory muscarinic receptors suggest that THD is selective for the M1 subtype. Because the M2 subtype is a small fraction of the total population in the striatum, it is not surprising that they would escape recognition in the QNB binding assays. These data suggest that inhibition of ACh release may contribute to the actions of THD only at very high doses, or when drug accumulation is abnormal.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验