Wu Bin, Arranz Jordi, Du Jinming, Zhou Da, Traulsen Arne
Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany School of Sciences, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany.
J R Soc Interface. 2016 Jul;13(120). doi: 10.1098/rsif.2016.0282.
Cooperators forgo their own interests to benefit others. This reduces their fitness and thus cooperators are not likely to spread based on natural selection. Nonetheless, cooperation is widespread on every level of biological organization ranging from bacterial communities to human society. Mathematical models can help to explain under which circumstances cooperation evolves. Evolutionary game theory is a powerful mathematical tool to depict the interactions between cooperators and defectors. Classical models typically involve either pairwise interactions between individuals or a linear superposition of these interactions. For interactions within groups, however, synergetic effects may arise: their outcome is not just the sum of its parts. This is because the payoffs via a single group interaction can be different from the sum of any collection of two-player interactions. Assuming that all interactions start from pairs, how can such synergetic multiplayer games emerge from simpler pairwise interactions? Here, we present a mathematical model that captures the transition from pairwise interactions to synergetic multiplayer ones. We assume that different social groups have different breaking rates. We show that non-uniform breaking rates do foster the emergence of synergy, even though individuals always interact in pairs. Our work sheds new light on the mechanisms underlying such synergetic interactions.
合作者会为了他人的利益而放弃自身利益。这降低了他们的适应性,因此基于自然选择,合作者不太可能繁衍开来。尽管如此,合作在从细菌群落到人类社会的生物组织的各个层面都广泛存在。数学模型有助于解释合作在何种情况下得以进化。进化博弈论是一种强大的数学工具,用于描述合作者与背叛者之间的相互作用。经典模型通常涉及个体之间的两两相互作用或这些相互作用的线性叠加。然而,对于群体内部的相互作用,可能会产生协同效应:其结果不仅仅是各部分的总和。这是因为通过单次群体相互作用获得的收益可能不同于任何两人相互作用组合的总和。假设所有相互作用都从两两组合开始,那么这种协同的多人博弈如何从更简单的两两相互作用中产生呢?在这里,我们提出了一个数学模型,该模型描述了从两两相互作用到协同多人相互作用的转变。我们假设不同的社会群体有不同的分裂率。我们表明,即使个体总是两两相互作用,不均匀的分裂率确实会促进协同效应的出现。我们的工作为这种协同相互作用背后的机制提供了新的见解。