Cortina George A, Kasson Peter M
Departments of Biomedical Engineering and Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA.
Bioinformatics. 2016 Nov 15;32(22):3420-3427. doi: 10.1093/bioinformatics/btw492. Epub 2016 Jul 27.
Bacterial resistance to antibiotics, particularly plasmid-encoded resistance to beta lactam drugs, poses an increasing threat to human health. Point mutations to beta-lactamase enzymes can greatly alter the level of resistance conferred, but predicting the effects of such mutations has been challenging due to the large combinatorial space involved and the subtle relationships of distant residues to catalytic function. Therefore we desire an information-theoretic metric to sensitively and robustly detect both local and distant residues that affect substrate conformation and catalytic activity.
Here, we report the use of positional mutual information in multiple microsecond-length molecular dynamics (MD) simulations to predict residues linked to catalytic activity of the CTX-M9 beta lactamase. We find that motions of the bound drug are relatively isolated from motions of the protein as a whole, which we interpret in the context of prior theories of catalysis. In order to robustly identify residues that are weakly coupled to drug motions but nonetheless affect catalysis, we utilize an excess mutual information metric. We predict 31 such residues for the cephalosporin antibiotic cefotaxime. Nine of these have previously been tested experimentally, and all decrease both enzyme rate constants and empirical drug resistance. We prospectively validate our method by testing eight high-scoring mutations and eight low-scoring controls in bacteria. Six of eight predicted mutations decrease cefotaxime resistance greater than 2-fold, while only one control shows such an effect. The ability to prospectively predict new variants affecting bacterial drug resistance is of great interest to clinical and epidemiological surveillance.
Excess mutual information code is available at https://github.com/kassonlab/positionalmi CONTACT: kasson@virginia.edu.
细菌对抗生素的耐药性,尤其是质粒介导的对β-内酰胺类药物的耐药性,对人类健康构成了日益严重的威胁。β-内酰胺酶的点突变可极大地改变所赋予的耐药水平,但由于涉及的组合空间巨大以及远距离残基与催化功能之间的微妙关系,预测此类突变的影响一直具有挑战性。因此,我们需要一种信息论指标来灵敏且稳健地检测影响底物构象和催化活性的局部和远距离残基。
在此,我们报告了在多个微秒时长的分子动力学(MD)模拟中使用位置互信息来预测与CTX-M9β-内酰胺酶催化活性相关的残基。我们发现结合药物的运动与蛋白质整体的运动相对隔离,我们在先前的催化理论背景下对此进行了解释。为了稳健地识别与药物运动弱耦合但仍影响催化的残基,我们使用了过量互信息指标。我们预测头孢噻肟抗生素有31个这样的残基。其中9个先前已进行过实验测试,所有这些残基均降低了酶的速率常数和经验性耐药性。我们通过在细菌中测试8个高分突变和8个低分对照来前瞻性验证我们的方法。8个预测突变中的6个使头孢噻肟耐药性降低超过2倍,而只有1个对照显示出这种效果。前瞻性预测影响细菌耐药性的新变体的能力对于临床和流行病学监测具有极大的意义。
过量互信息代码可在https://github.com/kassonlab/positionalmi获取。联系方式:kasson@virginia.edu。