Suppr超能文献

过量的位置互信息可预测影响β-内酰胺酶耐药性的局部和变构突变。

Excess positional mutual information predicts both local and allosteric mutations affecting beta lactamase drug resistance.

作者信息

Cortina George A, Kasson Peter M

机构信息

Departments of Biomedical Engineering and Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA.

出版信息

Bioinformatics. 2016 Nov 15;32(22):3420-3427. doi: 10.1093/bioinformatics/btw492. Epub 2016 Jul 27.

Abstract

MOTIVATION

Bacterial resistance to antibiotics, particularly plasmid-encoded resistance to beta lactam drugs, poses an increasing threat to human health. Point mutations to beta-lactamase enzymes can greatly alter the level of resistance conferred, but predicting the effects of such mutations has been challenging due to the large combinatorial space involved and the subtle relationships of distant residues to catalytic function. Therefore we desire an information-theoretic metric to sensitively and robustly detect both local and distant residues that affect substrate conformation and catalytic activity.

RESULTS

Here, we report the use of positional mutual information in multiple microsecond-length molecular dynamics (MD) simulations to predict residues linked to catalytic activity of the CTX-M9 beta lactamase. We find that motions of the bound drug are relatively isolated from motions of the protein as a whole, which we interpret in the context of prior theories of catalysis. In order to robustly identify residues that are weakly coupled to drug motions but nonetheless affect catalysis, we utilize an excess mutual information metric. We predict 31 such residues for the cephalosporin antibiotic cefotaxime. Nine of these have previously been tested experimentally, and all decrease both enzyme rate constants and empirical drug resistance. We prospectively validate our method by testing eight high-scoring mutations and eight low-scoring controls in bacteria. Six of eight predicted mutations decrease cefotaxime resistance greater than 2-fold, while only one control shows such an effect. The ability to prospectively predict new variants affecting bacterial drug resistance is of great interest to clinical and epidemiological surveillance.

AVAILABILITY AND IMPLEMENTATION

Excess mutual information code is available at https://github.com/kassonlab/positionalmi CONTACT: kasson@virginia.edu.

摘要

动机

细菌对抗生素的耐药性,尤其是质粒介导的对β-内酰胺类药物的耐药性,对人类健康构成了日益严重的威胁。β-内酰胺酶的点突变可极大地改变所赋予的耐药水平,但由于涉及的组合空间巨大以及远距离残基与催化功能之间的微妙关系,预测此类突变的影响一直具有挑战性。因此,我们需要一种信息论指标来灵敏且稳健地检测影响底物构象和催化活性的局部和远距离残基。

结果

在此,我们报告了在多个微秒时长的分子动力学(MD)模拟中使用位置互信息来预测与CTX-M9β-内酰胺酶催化活性相关的残基。我们发现结合药物的运动与蛋白质整体的运动相对隔离,我们在先前的催化理论背景下对此进行了解释。为了稳健地识别与药物运动弱耦合但仍影响催化的残基,我们使用了过量互信息指标。我们预测头孢噻肟抗生素有31个这样的残基。其中9个先前已进行过实验测试,所有这些残基均降低了酶的速率常数和经验性耐药性。我们通过在细菌中测试8个高分突变和8个低分对照来前瞻性验证我们的方法。8个预测突变中的6个使头孢噻肟耐药性降低超过2倍,而只有1个对照显示出这种效果。前瞻性预测影响细菌耐药性的新变体的能力对于临床和流行病学监测具有极大的意义。

可用性和实现方式

过量互信息代码可在https://github.com/kassonlab/positionalmi获取。联系方式:kasson@virginia.edu。

相似文献

8

引用本文的文献

3
Loop dynamics and the evolution of enzyme activity.环动态与酶活性的演变。
Nat Rev Chem. 2023 Aug;7(8):536-547. doi: 10.1038/s41570-023-00495-w. Epub 2023 May 24.
5
Harnessing Conformational Plasticity to Generate Designer Enzymes.利用构象可塑性来产生设计酶。
J Am Chem Soc. 2020 Jul 1;142(26):11324-11342. doi: 10.1021/jacs.0c04924. Epub 2020 Jun 17.
7
8
Conformational dynamics and enzyme evolution.构象动态与酶进化。
J R Soc Interface. 2018 Jul;15(144). doi: 10.1098/rsif.2018.0330.
9
Saturation Mutagenesis by Efficient Free-Energy Calculation.通过高效自由能计算进行饱和诱变
J Chem Theory Comput. 2018 Feb 13;14(2):894-904. doi: 10.1021/acs.jctc.7b01099. Epub 2018 Jan 8.

本文引用的文献

1
Functional Sites Induce Long-Range Evolutionary Constraints in Enzymes.功能位点在酶中诱导长程进化限制。
PLoS Biol. 2016 May 3;14(5):e1002452. doi: 10.1371/journal.pbio.1002452. eCollection 2016 May.
6
CTX-M Enzymes: Origin and Diffusion.CTX-M 酶:起源与传播
Front Microbiol. 2012 Apr 2;3:110. doi: 10.3389/fmicb.2012.00110. eCollection 2012.
10
The future of the β-lactams.β-内酰胺类的未来。
Curr Opin Microbiol. 2010 Oct;13(5):551-7. doi: 10.1016/j.mib.2010.09.008. Epub 2010 Sep 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验