Suppr超能文献

利用化学互补法研究C类β-内酰胺酶对第三代头孢菌素的耐药机制。

Investigation of the mechanism of resistance to third-generation cephalosporins by class C beta-lactamases by using chemical complementation.

作者信息

Carter Brian T, Lin Hening, Goldberg Shalom D, Althoff Eric A, Raushel Jessica, Cornish Virginia W

机构信息

Department of Chemistry, Columbia University, New York, NY 10027, USA.

出版信息

Chembiochem. 2005 Nov;6(11):2055-67. doi: 10.1002/cbic.200500058.

Abstract

The widespread use of antibiotics to treat bacterial infections has led to the continuing challenge of antibiotic resistance. For beta-lactam antibiotics, the most common form of resistance is the expression of beta-lactamase enzymes, which inactivate the antibiotics by cleavage of the beta-lactam core. In this study, chemical complementation, which is a general method to link the formation or cleavage of a chemical bond to the transcription of a reporter gene in vivo, was employed in combination with combinatorial mutagenesis to study the mechanism by which the class C beta-lactamase P99 might evolve resistance to the commonly administered third-generation cephalosporin cefotaxime. The chemical complementation system was first shown to be able to distinguish between the wild-type (wt) class C beta-lactamase P99 and the clinically isolated extended-spectrum class C beta-lactamase GC1 in the presence of cefotaxime. The system was then employed to evaluate the activity of mutants of wt P99 towards cefotaxime. A number of single-point mutations at position 221 (Tyr in wt P99) were identified that conferred resistance towards inhibition by cefotaxime, with as much as a 2000-fold increase in k(cat) and a 100-fold increase in k(cat)/K(M) (k(cat)=the rate of catalysis; K(M)=the Michaelis constant), as compared to those of the wt enzyme. Finally, the chemical complementation system was employed in a high-throughput screen to identify a number of mutants of P99 that have multiple mutations around the substrate-binding pocket that increase resistance towards cefotaxime inhibition. The catalytic turnover of cefotaxime by the most active mutant identified was 5500 times higher than that of the wt P99. The resistant mutants suggest a mechanism by which a number of mutations can confer resistance by increasing the flexibility of the Omega loop and altering the positioning of residue 221. Thus, as illustrated in this study, chemical complementation has the potential to be used as a high-throughput screen to study a wide range of enzyme-drug interactions.

摘要

使用抗生素治疗细菌感染的广泛应用导致了抗生素耐药性这一持续存在的挑战。对于β-内酰胺类抗生素,最常见的耐药形式是β-内酰胺酶的表达,这些酶通过裂解β-内酰胺核心使抗生素失活。在本研究中,化学互补法(一种将化学键的形成或裂解与体内报告基因转录相联系的通用方法)与组合诱变相结合,用于研究C类β-内酰胺酶P99可能对常用的第三代头孢菌素头孢噻肟产生耐药性的机制。化学互补系统首先被证明在头孢噻肟存在的情况下能够区分野生型(wt)C类β-内酰胺酶P99和临床分离的超广谱C类β-内酰胺酶GC1。然后该系统被用于评估wt P99突变体对头孢噻肟的活性。在位置221(wt P99中的酪氨酸)发现了许多单点突变,这些突变赋予了对头孢噻肟抑制的抗性,与wt酶相比,催化常数(k(cat))增加了多达2000倍,催化常数与米氏常数之比(k(cat)/K(M))增加了100倍(k(cat)=催化速率;K(M)=米氏常数)。最后,化学互补系统被用于高通量筛选,以鉴定P99的一些突变体,这些突变体在底物结合口袋周围有多个突变,增加了对头孢噻肟抑制的抗性。所鉴定的最活跃突变体对头孢噻肟的催化周转率比wt P99高5500倍。这些耐药突变体提示了一种机制,即一些突变可以通过增加Ω环的灵活性和改变221位残基的位置来赋予抗性。因此,如本研究所示,化学互补有潜力用作高通量筛选方法来研究广泛的酶-药物相互作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验