Suppr超能文献

噬菌体介导的抗癌药物递送的范式转变:从靶向“神奇子弹”到自导航“神奇导弹”。

Paradigm shift in bacteriophage-mediated delivery of anticancer drugs: from targeted 'magic bullets' to self-navigated 'magic missiles'.

作者信息

Petrenko Valery A, Gillespie James W

机构信息

a Department of Pathobiology, College of Veterinary Medicine , Auburn University , Auburn , AL , USA.

出版信息

Expert Opin Drug Deliv. 2017 Mar;14(3):373-384. doi: 10.1080/17425247.2016.1218463. Epub 2016 Aug 5.

Abstract

New phage-directed nanomedicines have emerged recently as a result of the in-depth study of the genetics and structure of filamentous phage and evolution of phage display and phage nanobiotechnology. This review focuses on the progress made in the development of the cancer-targeted nanomaterials and discusses the trends in using phage as a bioselectable molecular navigation system. Areas covered: The merging of phage display technologies with nanotechnology in recent years has proved promising in different areas of medicine and technology, such as medical diagnostics, molecular imaging, vaccine development and targeted drug/gene delivery, which is the focus of this review. The authors used data obtained from their research group and sourced using Science Citation Index (Web of Science) and NCBI PubMed search resources. Expert opinion: First attempts of adapting traditional concepts of direct targeting of tumor using phage-targeted nanomedicines has shown minimal improvements. With discovery and study of biological and technical barriers that prevent anti-tumor drug delivery, a paradigm shift from traditional drug targeting to nanomedicine navigation systems is required. The advanced bacteriophage-driven self-navigation systems are thought to overcome those barriers using more precise, localized phage selection methods, multi-targeting 'promiscuous' ligands and advanced multifunctional nanomedicine platforms.

摘要

由于对丝状噬菌体的遗传学和结构以及噬菌体展示和噬菌体纳米生物技术的发展进行了深入研究,新型噬菌体导向纳米药物最近应运而生。本综述重点关注癌症靶向纳米材料开发方面取得的进展,并讨论将噬菌体用作生物可选择分子导航系统的趋势。涵盖领域:近年来,噬菌体展示技术与纳米技术的融合在医学和技术的不同领域已被证明具有前景,如医学诊断、分子成像、疫苗开发以及靶向药物/基因递送,这也是本综述的重点。作者使用了从其研究小组获得的数据,并通过科学引文索引(科学网)和美国国立医学图书馆国立生物技术信息中心的PubMed搜索资源获取资料。专家观点:首次尝试采用噬菌体靶向纳米药物直接靶向肿瘤的传统概念,所取得的进展甚微。随着对阻碍抗肿瘤药物递送的生物学和技术障碍的发现与研究,需要从传统药物靶向向纳米药物导航系统转变范式。先进的噬菌体驱动自导航系统被认为可利用更精确、局部的噬菌体选择方法、多靶向“混杂”配体和先进的多功能纳米药物平台来克服这些障碍。

相似文献

1
Paradigm shift in bacteriophage-mediated delivery of anticancer drugs: from targeted 'magic bullets' to self-navigated 'magic missiles'.
Expert Opin Drug Deliv. 2017 Mar;14(3):373-384. doi: 10.1080/17425247.2016.1218463. Epub 2016 Aug 5.
2
Evolution of phage display: from bioactive peptides to bioselective nanomaterials.
Expert Opin Drug Deliv. 2008 Aug;5(8):825-36. doi: 10.1517/17425247.5.8.825.
3
Autonomous self-navigating drug-delivery vehicles: from science fiction to reality.
Ther Deliv. 2017 Dec;8(12):1063-1075. doi: 10.4155/tde-2017-0086.
4
Phage protein-targeted cancer nanomedicines.
FEBS Lett. 2014 Jan 21;588(2):341-9. doi: 10.1016/j.febslet.2013.11.011. Epub 2013 Nov 20.
5
Landscape Phage: Evolution from Phage Display to Nanobiotechnology.
Viruses. 2018 Jun 7;10(6):311. doi: 10.3390/v10060311.
7
Phage-Enabled Nanomedicine: From Probes to Therapeutics in Precision Medicine.
Angew Chem Int Ed Engl. 2017 Feb 13;56(8):1964-1992. doi: 10.1002/anie.201606181. Epub 2017 Jan 24.
8
Killing cancer cells by targeted drug-carrying phage nanomedicines.
BMC Biotechnol. 2008 Apr 3;8:37. doi: 10.1186/1472-6750-8-37.
9
Drug delivery vectors based on filamentous bacteriophages and phage-mimetic nanoparticles.
Drug Deliv. 2017 Nov;24(1):1898-1908. doi: 10.1080/10717544.2017.1410259.
10
Selection of pancreatic cancer cell-binding landscape phages and their use in development of anticancer nanomedicines.
Protein Eng Des Sel. 2014 Jul;27(7):235-43. doi: 10.1093/protein/gzu020. Epub 2014 Jun 4.

引用本文的文献

1
Comprehensive retrospect and future perspective on bacteriophage and cancer.
Virol J. 2024 Nov 6;21(1):278. doi: 10.1186/s12985-024-02553-1.
2
A Comprehensive Review on Phage Therapy and Phage-Based Drug Development.
Antibiotics (Basel). 2024 Sep 11;13(9):870. doi: 10.3390/antibiotics13090870.
3
Anti-Cancer Peptides: Status and Future Prospects.
Molecules. 2023 Jan 23;28(3):1148. doi: 10.3390/molecules28031148.
4
Cell-Penetrating Peptides.
Methods Mol Biol. 2022;2383:3-32. doi: 10.1007/978-1-0716-1752-6_1.
5
The Many Applications of Engineered Bacteriophages-An Overview.
Pharmaceuticals (Basel). 2021 Jun 30;14(7):634. doi: 10.3390/ph14070634.
6
Apoptin as a Tumor-Specific Therapeutic Agent: Current Perspective on Mechanism of Action and Delivery Systems.
Front Cell Dev Biol. 2020 Jun 25;8:524. doi: 10.3389/fcell.2020.00524. eCollection 2020.
8
Bordetella bronchiseptica bateriophage suppresses B. bronchiseptica-induced inflammation in swine nasal turbinate cells.
Genes Genomics. 2018 Dec;40(12):1383-1388. doi: 10.1007/s13258-018-0755-4. Epub 2018 Oct 23.
9
Landscape Phage: Evolution from Phage Display to Nanobiotechnology.
Viruses. 2018 Jun 7;10(6):311. doi: 10.3390/v10060311.

本文引用的文献

1
Phage Peptide Libraries As a Source of Targeted Ligands.
Acta Naturae. 2016 Jan-Mar;8(1):48-57.
2
Tumor penetrating peptides for improved drug delivery.
Adv Drug Deliv Rev. 2017 Feb;110-111:3-12. doi: 10.1016/j.addr.2016.03.008. Epub 2016 Apr 1.
3
Advancement and applications of peptide phage display technology in biomedical science.
J Biomed Sci. 2016 Jan 19;23:8. doi: 10.1186/s12929-016-0223-x.
4
Understanding the immunogenicity and antigenicity of nanomaterials: Past, present and future.
Toxicol Appl Pharmacol. 2016 May 15;299:70-7. doi: 10.1016/j.taap.2016.01.005. Epub 2016 Jan 7.
5
Promiscuous tumor targeting phage proteins.
Protein Eng Des Sel. 2016 Mar;29(3):93-103. doi: 10.1093/protein/gzv064. Epub 2016 Jan 12.
6
Antibody-drug conjugates--an emerging class of cancer treatment.
Br J Cancer. 2016 Feb 16;114(4):362-7. doi: 10.1038/bjc.2015.435. Epub 2016 Jan 7.
7
BDB: biopanning data bank.
Nucleic Acids Res. 2016 Jan 4;44(D1):D1127-32. doi: 10.1093/nar/gkv1100. Epub 2015 Oct 25.
8
Nanomedicine applied to translational oncology: A future perspective on cancer treatment.
Nanomedicine. 2016 Jan;12(1):81-103. doi: 10.1016/j.nano.2015.08.006. Epub 2015 Sep 12.
9
Challenges and opportunities for non-antibody scaffold drugs.
Drug Discov Today. 2015 Oct;20(10):1271-83. doi: 10.1016/j.drudis.2015.09.004. Epub 2015 Sep 7.
10
Design considerations for nanotherapeutics in oncology.
Nanomedicine. 2015 Nov;11(8):1893-907. doi: 10.1016/j.nano.2015.07.015. Epub 2015 Aug 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验