Suppr超能文献

在单次试验事件相关电位中使用多个事件相关电位成分对四类视觉对象进行分类。

Classifying four-category visual objects using multiple ERP components in single-trial ERP.

作者信息

Qin Yu, Zhan Yu, Wang Changming, Zhang Jiacai, Yao Li, Guo Xiaojuan, Wu Xia, Hu Bin

机构信息

School of Information Science and Technology, Beijing Normal University, Beijing, China.

Beijing Anding Hospital, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.

出版信息

Cogn Neurodyn. 2016 Aug;10(4):275-85. doi: 10.1007/s11571-016-9378-0. Epub 2016 Feb 18.

Abstract

Object categorization using single-trial electroencephalography (EEG) data measured while participants view images has been studied intensively. In previous studies, multiple event-related potential (ERP) components (e.g., P1, N1, P2, and P3) were used to improve the performance of object categorization of visual stimuli. In this study, we introduce a novel method that uses multiple-kernel support vector machine to fuse multiple ERP component features. We investigate whether fusing the potential complementary information of different ERP components (e.g., P1, N1, P2a, and P2b) can improve the performance of four-category visual object classification in single-trial EEGs. We also compare the classification accuracy of different ERP component fusion methods. Our experimental results indicate that the classification accuracy increases through multiple ERP fusion. Additional comparative analyses indicate that the multiple-kernel fusion method can achieve a mean classification accuracy higher than 72 %, which is substantially better than that achieved with any single ERP component feature (55.07 % for the best single ERP component, N1). We compare the classification results with those of other fusion methods and determine that the accuracy of the multiple-kernel fusion method is 5.47, 4.06, and 16.90 % higher than those of feature concatenation, feature extraction, and decision fusion, respectively. Our study shows that our multiple-kernel fusion method outperforms other fusion methods and thus provides a means to improve the classification performance of single-trial ERPs in brain-computer interface research.

摘要

利用参与者观看图像时测量的单试次脑电图(EEG)数据进行物体分类的研究已十分深入。在先前的研究中,多个事件相关电位(ERP)成分(如P1、N1、P2和P3)被用于提高视觉刺激物体分类的性能。在本研究中,我们引入了一种使用多核支持向量机融合多个ERP成分特征的新方法。我们研究融合不同ERP成分(如P1、N1、P2a和P2b)的潜在互补信息是否能提高单试次EEG中四类视觉物体分类的性能。我们还比较了不同ERP成分融合方法的分类准确率。我们的实验结果表明,通过多个ERP融合,分类准确率有所提高。额外的比较分析表明,多核融合方法能够实现高于72%的平均分类准确率,这明显优于任何单个ERP成分特征所达到的准确率(最佳单个ERP成分N1的准确率为55.07%)。我们将分类结果与其他融合方法的结果进行比较,确定多核融合方法的准确率分别比特征串联、特征提取和决策融合的准确率高5.47%、4.06%和16.90%。我们的研究表明,我们的多核融合方法优于其他融合方法,从而为改善脑机接口研究中单试次ERP的分类性能提供了一种手段。

相似文献

1
Classifying four-category visual objects using multiple ERP components in single-trial ERP.
Cogn Neurodyn. 2016 Aug;10(4):275-85. doi: 10.1007/s11571-016-9378-0. Epub 2016 Feb 18.
2
Combining features from ERP components in single-trial EEG for discriminating four-category visual objects.
J Neural Eng. 2012 Oct;9(5):056013. doi: 10.1088/1741-2560/9/5/056013. Epub 2012 Sep 17.
3
Spatial-Temporal Feature Analysis on Single-Trial Event Related Potential for Rapid Face Identification.
Front Comput Neurosci. 2017 Nov 27;11:106. doi: 10.3389/fncom.2017.00106. eCollection 2017.
4
Single-trial classification of EEG in a visual object task using ICA and machine learning.
J Neurosci Methods. 2014 May 15;228:1-14. doi: 10.1016/j.jneumeth.2014.02.014. Epub 2014 Mar 5.
6
Analysis and Classification of Event-Related Potentials During Image Observation.
Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-4. doi: 10.1109/EMBC40787.2023.10340052.
7
ERP signs of categorical and supra-categorical processing of visual information.
Biol Psychol. 2015 Jan;104:90-107. doi: 10.1016/j.biopsycho.2014.11.012. Epub 2014 Nov 29.
8
Multi-Feature Fusion Method Based on EEG Signal and its Application in Stroke Classification.
J Med Syst. 2019 Dec 21;44(2):39. doi: 10.1007/s10916-019-1517-9.
9
A comparative study of machine learning methods for classifying ERP scalp distribution.
Biomed Phys Eng Express. 2023 Jun 16;9(4). doi: 10.1088/2057-1976/acdbd0.

引用本文的文献

4
The Neural Responses of Visual Complexity in the Oddball Paradigm: An ERP Study.
Brain Sci. 2022 Mar 27;12(4):447. doi: 10.3390/brainsci12040447.
5
Categorizing objects from MEG signals using EEGNet.
Cogn Neurodyn. 2022 Apr;16(2):365-377. doi: 10.1007/s11571-021-09717-7. Epub 2021 Sep 17.
7
Using Muse: Rapid Mobile Assessment of Brain Performance.
Front Neurosci. 2021 Jan 28;15:634147. doi: 10.3389/fnins.2021.634147. eCollection 2021.

本文引用的文献

1
Improving N1 classification by grouping EEG trials with phases of pre-stimulus EEG oscillations.
Cogn Neurodyn. 2015 Apr;9(2):103-12. doi: 10.1007/s11571-014-9317-x. Epub 2014 Nov 19.
2
Unsupervised feature learning improves prediction of human brain activity in response to natural images.
PLoS Comput Biol. 2014 Aug 7;10(8):e1003724. doi: 10.1371/journal.pcbi.1003724. eCollection 2014 Aug.
3
The analytic bilinear discrimination of single-trial EEG signals in rapid image triage.
PLoS One. 2014 Jun 16;9(6):e100097. doi: 10.1371/journal.pone.0100097. eCollection 2014.
4
Investigation of changes in EEG complexity during memory retrieval: the effect of midazolam.
Cogn Neurodyn. 2012 Dec;6(6):537-46. doi: 10.1007/s11571-012-9214-0. Epub 2012 Jul 22.
5
Bayesian reconstruction of multiscale local contrast images from brain activity.
J Neurosci Methods. 2013 Oct 30;220(1):39-45. doi: 10.1016/j.jneumeth.2013.08.020. Epub 2013 Aug 30.
6
Dissociation of category versus item priming in face processing: an event-related potential study.
Cogn Neurodyn. 2012 Apr;6(2):155-67. doi: 10.1007/s11571-011-9185-6. Epub 2011 Dec 11.
7
Combining features from ERP components in single-trial EEG for discriminating four-category visual objects.
J Neural Eng. 2012 Oct;9(5):056013. doi: 10.1088/1741-2560/9/5/056013. Epub 2012 Sep 17.
8
Multimodal classification of Alzheimer's disease and mild cognitive impairment.
Neuroimage. 2011 Apr 1;55(3):856-67. doi: 10.1016/j.neuroimage.2011.01.008. Epub 2011 Jan 12.
9
Identifying object categories from event-related EEG: toward decoding of conceptual representations.
PLoS One. 2010 Dec 30;5(12):e14465. doi: 10.1371/journal.pone.0014465.
10
Structural encoding and identification in face processing: erp evidence for separate mechanisms.
Cogn Neuropsychol. 2000 Feb 1;17(1):35-55. doi: 10.1080/026432900380472.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验