Qin Yu, Zhan Yu, Wang Changming, Zhang Jiacai, Yao Li, Guo Xiaojuan, Wu Xia, Hu Bin
School of Information Science and Technology, Beijing Normal University, Beijing, China.
Beijing Anding Hospital, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.
Cogn Neurodyn. 2016 Aug;10(4):275-85. doi: 10.1007/s11571-016-9378-0. Epub 2016 Feb 18.
Object categorization using single-trial electroencephalography (EEG) data measured while participants view images has been studied intensively. In previous studies, multiple event-related potential (ERP) components (e.g., P1, N1, P2, and P3) were used to improve the performance of object categorization of visual stimuli. In this study, we introduce a novel method that uses multiple-kernel support vector machine to fuse multiple ERP component features. We investigate whether fusing the potential complementary information of different ERP components (e.g., P1, N1, P2a, and P2b) can improve the performance of four-category visual object classification in single-trial EEGs. We also compare the classification accuracy of different ERP component fusion methods. Our experimental results indicate that the classification accuracy increases through multiple ERP fusion. Additional comparative analyses indicate that the multiple-kernel fusion method can achieve a mean classification accuracy higher than 72 %, which is substantially better than that achieved with any single ERP component feature (55.07 % for the best single ERP component, N1). We compare the classification results with those of other fusion methods and determine that the accuracy of the multiple-kernel fusion method is 5.47, 4.06, and 16.90 % higher than those of feature concatenation, feature extraction, and decision fusion, respectively. Our study shows that our multiple-kernel fusion method outperforms other fusion methods and thus provides a means to improve the classification performance of single-trial ERPs in brain-computer interface research.
利用参与者观看图像时测量的单试次脑电图(EEG)数据进行物体分类的研究已十分深入。在先前的研究中,多个事件相关电位(ERP)成分(如P1、N1、P2和P3)被用于提高视觉刺激物体分类的性能。在本研究中,我们引入了一种使用多核支持向量机融合多个ERP成分特征的新方法。我们研究融合不同ERP成分(如P1、N1、P2a和P2b)的潜在互补信息是否能提高单试次EEG中四类视觉物体分类的性能。我们还比较了不同ERP成分融合方法的分类准确率。我们的实验结果表明,通过多个ERP融合,分类准确率有所提高。额外的比较分析表明,多核融合方法能够实现高于72%的平均分类准确率,这明显优于任何单个ERP成分特征所达到的准确率(最佳单个ERP成分N1的准确率为55.07%)。我们将分类结果与其他融合方法的结果进行比较,确定多核融合方法的准确率分别比特征串联、特征提取和决策融合的准确率高5.47%、4.06%和16.90%。我们的研究表明,我们的多核融合方法优于其他融合方法,从而为改善脑机接口研究中单试次ERP的分类性能提供了一种手段。