Anbuvithya R, Mathiyalagan K, Sakthivel R, Prakash P
Department of Mathematics, National Institute of Technology, Tiruchirappalli, 620 015 India.
Department of Mathematics, Anna University-Regional Centre, Coimbatore, 641 047 India.
Cogn Neurodyn. 2016 Aug;10(4):339-51. doi: 10.1007/s11571-016-9385-1. Epub 2016 Apr 27.
This paper addresses the passivity problem for a class of memristor-based bidirectional associate memory (BAM) neural networks with uncertain time-varying delays. In particular, the proposed memristive BAM neural networks is formulated with two different types of memductance functions. By constructing proper Lyapunov-Krasovskii functional and using differential inclusions theory, a new set of sufficient condition is obtained in terms of linear matrix inequalities which guarantee the passivity criteria for the considered neural networks. Finally, two numerical examples are given to illustrate the effectiveness of the proposed theoretical results.
本文研究了一类具有不确定时变延迟的基于忆阻器的双向联想记忆(BAM)神经网络的无源问题。具体而言,所提出的忆阻BAM神经网络采用了两种不同类型的忆导函数来构建。通过构造适当的Lyapunov-Krasovskii泛函并利用微分包含理论,以线性矩阵不等式的形式得到了一组新的充分条件,这些条件保证了所考虑神经网络的无源准则。最后,给出了两个数值例子来说明所提出理论结果的有效性。