Suppr超能文献

氧空位诱导的超薄 TiO2 纳米层接枝石墨烯片的快速锂存储和高效有机物光降解。

Oxygen vacancy induced fast lithium storage and efficient organics photodegradation over ultrathin TiO2 nanolayers grafted graphene sheets.

机构信息

Nanchang Hangkong University, Department of Material Chemistry, Nanchang, Jiangxi Province, China.

Nanchang Hangkong University, Department of Material Chemistry, Nanchang, Jiangxi Province, China.

出版信息

J Hazard Mater. 2016 Nov 15;318:551-560. doi: 10.1016/j.jhazmat.2016.07.046. Epub 2016 Jul 19.

Abstract

In this work we have developed a unique structure of ultrathin (5nm) TiO2 nanolayers grafted graphene nanosheets (TiO2/G) and integrated oxygen vacancy (VO) into TiO2 to enhance its lithium storage and photocatalytic performances. The defective TiO2/G was synthesized by a solvothermal and subsequent thermal treatment method. When treated in a H2 atmosphere, the resulting TiO2-x/G(H2) has lower crystallinity, smaller crystal size, richer surface VO, higher surface area, larger pore volume, and lower charge transfer resistance than that reduced by NaBH4 solid, i.e., TiO2-x/G(NaBH4). More importantly, the surface VO in the TiO2-x/G(H2) could remarkably inhibit the recombination of photogenerated electron-hole pairs compared with the bulk Vo in the TiO2-x/G(NaBH4). As a result, the combination of all the factors contributed to the superiority of TiO2-x/G(H2), which demonstrated not only 70% higher specific capacity, longer cycling performance (1000 cycles) and better rate capability for lithium-ion battery, but also higher photocatalytic activity and 1.5 times faster degradation rate for organic pollutants removal than TiO2-x/G(NaBH4). The findings in this work will benefit the fundamental understanding of TiO2/G surface chemistry and advance the design and preparation of functional materials for energy storage and water treatment.

摘要

在这项工作中,我们开发了一种独特的结构,即超薄(5nm)的 TiO2 纳米层接枝石墨烯纳米片(TiO2/G),并将氧空位(VO)整合到 TiO2 中,以提高其储锂和光催化性能。缺陷型 TiO2/G 通过溶剂热和随后的热处理方法合成。当在 H2 气氛中处理时,所得的 TiO2-x/G(H2) 的结晶度较低、晶体尺寸较小、表面 VO 更丰富、比表面积更大、孔体积更大、电荷转移电阻更小,而通过 NaBH4 固体还原的 TiO2-x/G(NaBH4)则具有更高的结晶度、更大的晶体尺寸、更丰富的表面 VO、更大的比表面积、更大的孔体积和更小的电荷转移电阻。更重要的是,TiO2-x/G(H2)中的表面 VO 可以显著抑制光生电子-空穴对的复合,而 TiO2-x/G(NaBH4)中的体相 VO 则不能。因此,所有因素的结合使得 TiO2-x/G(H2)具有优越性,它不仅表现出 70%更高的比容量、更长的循环性能(1000 次循环)和更好的倍率性能,而且在光催化活性和有机污染物去除速率方面也表现出 1.5 倍的提高。本工作的发现将有助于深入了解 TiO2/G 表面化学,并推动储能和水处理功能性材料的设计和制备。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验